Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Prof. Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Faculty Membr | University of Mohaghegh Ardabili | Iran

Dr. Raziyeh Pourdarbani is a Professor of Biosystems Engineering at the University of Mohaghegh Ardabili and an internationally recognized researcher in precision agriculture, image processing, machine vision, artificial intelligence, and hyperspectral imaging. Her research is dedicated to developing advanced computational approaches that enhance automation, sustainability, and non-destructive assessment within agricultural production systems. She has established a strong scholarly footprint through extensive publications that explore cutting-edge deep learning architectures, including the application of 2D and 3D convolutional neural networks, majority voting ensemble strategies, hybrid neural networks, and metaheuristic optimization techniques for quality evaluation and decision-making in crop and fruit management. Her studies have significantly advanced non-destructive methodologies for detecting bruises, internal defects, and ripening stages in fruits, as well as monitoring excessive nitrogen consumption and estimating chemical and physicochemical properties in plant leaves using hyperspectral, visible, and near-infrared spectral data. In addition to agricultural sensing and classification research, she has contributed impactful work on sustainable bioenergy, including biomethane production from agricultural residues, biodiesel engine performance enhancement using nanomaterials, and advanced exergy and life-cycle analysis of hybrid geothermal–solar power systems. She has authored multiple academic books addressing renewable energy and intelligent grading technologies and has led numerous research projects involving automated fruit identification algorithms, orchard-based robotic systems, video-based fruit maturity estimation, spectral wavelength optimization, agricultural development modeling, and geothermal heating-system design. Dr. Pourdarbani actively disseminates her findings through national and international conferences and contributes to the scientific community through reviewing and collaborative roles in multidisciplinary research initiatives. Her work is widely acknowledged for its scientific value and practical relevance in improving agricultural resource efficiency, enhancing food-quality monitoring, and promoting environmentally responsible production strategies. As a leading figure in the integration of computational intelligence with agricultural engineering, she continues to shape research directions that support global progress toward smart, sustainable, and technologically empowered agriculture.

Profile : Google Scholar

Featured Publication

Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal–solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4).

Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J. L., & Arribas, J. I. (2019). A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties.

Pourdarbani, R., Sabzi, S., García-Amicis, V. M., García-Mateos, G., Hernández-Hernández, J. L., & Arribas, J. I. (2019). Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9(11), 672.

Ebrahimi, S., Pourdarbani, R., Sabzi, S., Rohban, M. H., & Arribas, J. I. (2023). From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. Horticulturae, 9(8), 936.

Pourdarbani, R., Sabzi, S., Rohban, M. H., Hernández-Hernández, J. L., & Arribas, J. I. (2021). One-dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves. Applied Sciences, 11(24), 11853

Niti Kant | Computational Theory | Best Researcher Award

Prof. Dr. Niti Kant | Computational Theory | Best Researcher Award

Professor | University of Allahabad | India

Prof. Dr. Niti Kant is a distinguished physicist currently serving in the Department of Physics, University of Allahabad, Prayagraj, India. With a Ph.D. from the Indian Institute of Technology (IIT) Delhi (2005) under the supervision of Dr. A. K. Sharma, his research focuses on laser–plasma interaction, self-focusing of lasers, harmonic generation, laser-induced electron acceleration, and terahertz (THz) radiation generation. Over the past two decades, Dr. Kant has made significant contributions to theoretical plasma physics, employing advanced analytical and numerical modeling approaches using Mathematica and Origin. He has published over 150 research papers in reputed international journals indexed by SCI, earning an H-index of 33 on Google Scholar, reflecting the global impact of his research. His academic journey includes postdoctoral research at POSTECH, South Korea, and academic leadership at Lovely Professional University, Punjab, where he served as Professor before joining the University of Allahabad. Dr. Kant has successfully led several sponsored research projects funded by CSIR, SERB, and DST, totaling over ₹50 lakhs, and has guided more than ten Ph.D. scholars in cutting-edge areas such as THz generation, nonlinear optics, and high-power laser–matter interaction. A life member of several prestigious scientific societies, including the Indian Science Congress Association, Optical Society of India, and Plasma Science Society of India, he also serves on editorial and review boards of international journals and as a peer reviewer for top publishers like Elsevier, IOP, and AIP. His work has been recognized with multiple honors, including the Merit Award (2024) by the University of Allahabad, Research Excellence Awards (2020, 2021), and the Outstanding Scientist Award (2020). With active international collaborations across the UK, Czech Republic, South Korea, and the USA, Dr. Kant’s research continues to advance the frontiers of laser–plasma physics, contributing to innovations in photonics, clean energy, and applied plasma technologies with profound implications for scientific and technological progress.

Featured Publication

Kamboj, O., Azad, T., Rajput, J., & Kant, N. (2025). The effect of density ramp on self-focusing of q-Gaussian laser beam in magnetized plasma. Journal of Optics (India). Citations: 2

Azad, T., Kant, N., & Kamboj, O. (2025). Efficient THz generation by Hermite–cosh–Gaussian lasers in plasma with slanting density modulation. Journal of Optics (India). Citations: 23

Singh, J., Kumar, S., Kant, N., & Rajput, J. (2025). Effect of frequency-chirped ionization laser on accelerated electron beam characteristics in plasma wakefield acceleration. European Physical Journal Plus. Citations: 1

Anshal, L., Kant, N., Azad, T., Rajput, J., & Kamboj, O. (2025). Propagation of Hermite–cosh–Gaussian laser beam in free-electron laser device under upward plasma density ramp. Laser Physics Letters. Citations: 1

Azad, T., Kant, N., & Kamboj, O. (2025). Enhanced third harmonic generation and SRS suppression in magnetized rippled plasma using Hermite cosh–Gaussian laser beam. Journal of Optics (India). Citations: 2

Prof. Dr. Niti Kant’s pioneering research in laser–plasma interaction, nonlinear optics, and terahertz generation has advanced the understanding of high-power laser applications, enabling innovations in photonics, clean energy, and next-generation communication technologies. His work bridges fundamental physics with practical technologies, fostering global scientific collaboration and contributing to sustainable technological progress.

Christian Peluso | Artificial Intelligence | Excellence in Ethical AI Development Award

Dr. Christian Peluso | Artificial Intelligence | Excellence in Ethical AI Development Award

Libero professionista | Consiglio Nazionale delle RicercheThis link is disabled | Italy

Dr. Christian Peluso is a researcher specializing in artificial intelligence with expertise in federated learning, deep learning, and cybersecurity, focusing on privacy-preserving systems for mobile and distributed environments. His research aims to develop intelligent models capable of processing complex and varied data while safeguarding user privacy and ensuring compliance with data protection regulations. Christian earned his Master’s degree in Artificial Intelligence from the University of Pisa with the highest distinction, presenting a thesis titled PrivNet: Advancing Mobile Security through Privacy-Preserving Federated Learning for Malware Detection, which introduced an innovative federated learning approach for mobile malware analysis using convolutional neural networks optimized for image-based data. He has actively collaborated with the Consiglio Nazionale delle Ricerche (CNR) and several academic and research institutions, contributing to projects that merge AI, cybersecurity, and data privacy. His publications, including “PrivNet: Advancing Mobile Security through Privacy-Preserving Federated Learning for Malware Detection” and “An Approach for Privacy-Preserving Mobile Malware Detection Through Federated Machine Learning,” reflect his deep involvement in advancing secure and decentralized AI solutions. He has also contributed to research on explainability-driven malware analysis using deep learning, aimed at improving model interpretability and aiding analysts in identifying malicious software components efficiently. Christian’s technical proficiency covers Python, machine learning frameworks, and reverse engineering methodologies, enabling him to design intelligent systems with strong analytical and practical impact. His academic achievements and professional experiences in software engineering, mobile application security, and AI-driven analysis demonstrate a consistent pursuit of excellence and innovation. His work not only strengthens theoretical understanding in federated machine learning but also delivers practical tools for protecting digital ecosystems. Through his commitment to research, collaboration, and ethical AI development, he continues to contribute meaningfully to the evolving landscape of artificial intelligence and data security. 17 Citations 3 Documents 2 h-index View h-index

Featured Publication

Iadarola, G., Casolare, R., Martinelli, F., Mercaldo, F., Peluso, C., & Santone, A. (2021). A semi-automated explainability-driven approach for malware analysis through deep learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE. Cited by: 19

Ciaramella, G., Martinelli, F., Mercaldo, F., Peluso, C., & Santone, A. (2024). An approach for privacy-preserving mobile malware detection through federated machine learning. In Proceedings of the 26th International Conference on Enterprise Information Systems (ICEIS 2024). SciTePress.
Cited by: 5

Peluso, C., Ciaramella, G., Mercaldo, F., Santone, A., & Martinelli, F. (2024). A federated learning-based Android malware detector through differential privacy. In International Conference on Computer Aided Systems Theory (EUROCAST 2024) (pp. 307–319).

Sirous Rafiei Asl | Computer Vision | Best Researcher Award

Dr. Sirous Rafiei Asl | Computer Vision | Best Researcher Award

Medical Student | Ahvaz Jundishapur University of Medical Sciences | Iran

Dr. Safa Najafi’s research focuses on the intersection of medical education and parasitology, with particular attention to Leishmaniasis and other parasitic diseases prevalent in tropical and subtropical regions. Her work emphasizes evaluating medical students’ knowledge, awareness, and performance toward parasitic infections to identify gaps that hinder effective disease prevention and control. Through descriptive and analytical studies, she explores the relationship between demographic factors, clinical exposure, and academic performance in shaping medical students’ understanding of zoonotic diseases such as Leishmania infections. The findings of her research highlight that enhanced awareness and practical performance among future healthcare professionals play a critical role in public health preparedness and vector control strategies. Safa Najafi also investigates behavioral and environmental determinants of disease transmission and advocates for integrating targeted educational programs, including mobile-based learning and seminar-based interventions, into medical curricula to strengthen clinical competencies and promote early prevention. Her studies contribute to developing evidence-based strategies to reduce leishmaniasis transmission by bridging the gap between theoretical knowledge and field application. By analyzing key epidemiological factors, her research supports the design of culturally relevant training programs that empower medical students and healthcare providers to adopt preventive practices effectively. This work aligns with broader goals in global health to mitigate the burden of parasitic diseases through informed medical practice and community education. Overall, her research advances understanding of how educational approaches can shape health behavior and influence disease outcomes, reinforcing the significance of awareness, attitudes, and practices in sustainable disease management. Safa Najafi’s scholarly contributions are reflected in her academic record, with 2 Citations, 3 Documents, and an h-index of 1. View h-index.

Profiles: Google ScholarScopus | ORCID
Featured Publication

Elahi, R. K., Asl, S., & Shahian, F. (2013). Study on the effects of various doses of Tribulus terrestris extract on epididymal sperm morphology and count in rat. Iranian Journal of Reproductive Medicine, 11(3), 207–212. Citations: 46

Mahdavinia, M., Alizadeh, S., Vanani, A. R., Dehghani, M. A., Shirani, M., et al. (2019). Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. Iranian Journal of Basic Medical Sciences, 22(5), 499. Citations: 18

Moradi, M., Montazeri, E. A., Rafiei Asl, S., Pormohammad, A., Farshadzadeh, Z., et al. (2025). In vitro and in vivo antibacterial and antibiofilm activity of zinc sulfate (ZnSO₄) and carvacrol (CV) alone and in combination with antibiotics against Pseudomonas aeruginosa. Antibiotics, 14(4), 367. Citations: 5

Rafiei-Asl, S., Gh., K., Jalali, S. M., Jamshidian, J., & Rezaie, A. (2021). Protective effects of bromelain against cadmium-induced pulmonary intoxication in rats: A histopathologic and cytologic study. Archives of Razi Institute, 76(5), 1427–1436. Citations: 3

Rafiei-Asl, S., Khadjeh, G., Jalali, S. M., Jamshidian, J., & Rezaie, A. (2020). Investigating the protective effects of bromelain against inflammatory marker alterations induced by cadmium pulmonary intoxication in rat. Iranian Veterinary Journal, 16(2), 75–88. Citations: 3

Ye Tao | Machine Learning | Best Researcher Award

Dr. Ye Tao | Machine Learning | Best Researcher Award

PhD Student | China University of Petroleum, Beijing| China

Dr Ye Tao is a dedicated researcher focusing on sedimentology, unconventional oil and gas exploration, and the integration of artificial intelligence into geological studies. His work emphasizes fine characterization and sweet spot evaluation of shale gas reservoirs, tectonic evolution, sedimentary system reconstruction, and deepwater hydrocarbon accumulation models. Ye Tao has served as principal investigator and key researcher on multiple funded projects, including studies on shale reservoir heterogeneity in the Wufeng–Longmaxi Formations, tectonic evolution of the North Uscult Basin, and migration and accumulation mechanisms in the Guyana Basin. His expertise spans seismic data interpretation, fracture classification, mechanical modeling, and stress field simulation, contributing to accurate prediction of reservoir sweet spots and caprock sealing capacity. Ye Tao has actively published in peer-reviewed journals, presenting significant contributions such as deep learning-aided shale reservoir analysis, isotope-based sea-level reconstructions, and machine learning-based carbonate fossil recognition. His interdisciplinary approach bridges geology with computer vision and artificial intelligence, providing innovative methodologies for improving exploration accuracy. Ye Tao has been awarded multiple national and institutional prizes, including first prizes at China University of Petroleum’s Graduate Academic Forum and the National Doctoral Student Academic Forum, showcasing his academic excellence and leadership. His skillset includes seismic processing, petrographic thin section analysis, carbon and oxygen isotope testing, and restoration of paleoenvironments, enabling comprehensive understanding of sedimentary processes. By applying deep learning techniques to geological data, Ye Tao is contributing to next-generation exploration strategies that enhance prediction of hydrocarbon distribution and optimize resource development. His work demonstrates strong potential for advancing both theoretical sedimentology and applied petroleum exploration, making significant impact on energy resource evaluation and development strategies in complex geological settings.

Profile:  ORCID
Featured Publication

Tao, Y., Bao, Z., & Ma, F. (2025). Analyzing key controlling factors of shale reservoir heterogeneity in “thin” stratigraphic settings: A deep learning-aided case study of the Wufeng-Longmaxi Formations, Fuyan Syncline, Northern Guizhou. Applied Computing and Geosciences, 100293.

Tao, Y., Bao, Z., Yu, J., & Li, Y. (2025). The petrophysical characteristics and controlling factors of the Wufeng Formation–Longmaxi Formation shale reservoirs in the Fuyan Syncline, Northern Guizhou. Geological Journal.

Tao, Y., Gao, D., He, Y., Ngia, N. R., Wang, M., Sun, C., Huang, X., & Wu, J. (2023). Carbon and oxygen isotopes of the Lianglitage Formation in the Tazhong area, Tarim Basin: Implications for sea-level changes and palaeomarine conditions. Geological Journal, 58, 967–980.

Tao, Y., He, Y., Zhao, Z., Wu, D., & Deng, Q. (2023). Sealing of oil-gas reservoir caprock: Destruction of shale caprock by micro-fractures. Frontiers in Earth Science, 10, 1065875.

Khaista Rahman | Artificial Intelligence| Best Paper Award

Dr. Khaista Rahman | Artificial Intelligence| Best Paper Award

Assistant Professor | Shaheed Benazir Bhutto University Sheringal | Pakistan 

Dr. Khaista Rahman is a distinguished researcher specializing in fuzzy set theory, fuzzy logic, aggregation operators, and artificial intelligence-based decision support systems, with a strong focus on solving decision-making problems under uncertainty. His work explores advanced mathematical structures like Pythagorean fuzzy numbers, interval-valued fuzzy models, and complex fuzzy systems to create robust solutions for multi-attribute group decision-making processes. Dr. Rahman has published extensively on generalized and induced aggregation operators, developing new models that enhance decision accuracy and reliability in diverse applications such as plant location selection, hospital siting during COVID-19, vaccine selection, and railway optimization problems. His research integrates t-norm and t-conorm-based approaches, Einstein hybrid operators, and logarithmic intuitionistic fuzzy techniques to handle complex decision environments. He has also supervised several M.Phil., M.Sc., and BS scholars, contributing significantly to academic mentorship and knowledge dissemination. Recognized among the top 2% scientists worldwide by Stanford University from 2022 to 2025, he has made substantial contributions to granular computing, soft computing, and intelligent systems literature. His work during the COVID-19 pandemic stands out for developing emergency response models using complex fuzzy information to predict and manage disease spread in Pakistan. As Principal Investigator of a funded project on complex intelligent decision support models, Dr. Rahman has bridged theoretical advancements with practical implementations, making his research highly impactful. With an H-index of 26 and over 1900 citations, his scholarly influence spans mathematics, operations research, and computational intelligence, providing frameworks that empower policymakers and industries to make optimal decisions in uncertain and dynamic scenarios. Dr. Khaista Rahman has achieved 776 citations across 532 documents with an impressive h-index of 16.

Profile:  Scopus | ORCID
Featured Publication
  1. Rahman, K., & Khishe, M. (2024). Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process [Retracted]. Scientific Reports, 14(1), 15253.

  2. Rahman, K., & Khishe, M. (2024). Retraction Note: Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process. Scientific Reports, 14(1).

  3. Rahman, K., et al. (2025). Unraveling vegetation diversity and environmental influences in the Sultan Kha Valley, Dir Upper, Pakistan: An advanced multivariate analysis approach. Polish Journal of Environmental Studies.

  4. Rahman, K. (2024). Some new types induced complex intuitionistic fuzzy Einstein geometric aggregation operators and their application to decision-making problem. Neural Computing and Applications.

Vandana Rajput | Machine Learning | Best Researcher Award

Ms. Vandana Rajput | Machine Learning | Best Researcher Award

Research Scholar| Netaji Subhas University of Technology | India

Ms. Vandana Rajput, currently a Research Scholar at Netaji Subhas University of Technology, am pleased to nominate myself for the Best Researcher Award. I received my B.E. (2015) and M.Tech (2017) in Information Technology from MITS, Gwalior, and gained valuable industry experience as a Senior Research Analyst at TechieShubhdeep Itsolution Pvt. Ltd. in 2019. Additionally, I served as guest faculty at MNNIT Allahabad and SRCEM colleges, sharing knowledge and guiding students. I have worked as a Junior Research Fellow (JRF) on the prestigious IIT Mandi iHub research project, which helped strengthen my expertise in machine learning and research methodology. My work involves designing innovative concepts, developing methodologies, conducting experiments, and validating results to ensure accuracy and scientific rigor. I have authored one Scopus-indexed publication and continue to contribute to research through original manuscripts. My areas of research focus on machine learning and its applications in solving real-world challenges. I remain committed to advancing research excellence and innovation, collaborating with peers, and producing high-quality, impactful work. I hereby declare that the information provided is accurate to the best of my knowledge and agree to abide by all rules, terms, and conditions of the award nomination process.

Profile:  Scopus

Featured Publication

1. Rajput, V., Jain, A., & Jain, M. (2025). An Automatic Approach for Detecting Cognitive Distortion from Spontaneous Thinking. Procedia Computer Science, 260, 768-775 Citations: 2

Dr. Devbrat Pundhir | Artificial Intelligence | Best Researcher Award

Dr. Devbrat Pundhir | Artificial Intelligence | Best Researcher Award

Assoc.Prof.Dr at Raja Balwant Singh Engineering Technical Campus, India

Dr. Devbrat Pundhir has consistently contributed to the understanding of ionospheric behavior under seismic influences through a series of well-structured, peer-reviewed studies. His commitment to exploring the physics behind electromagnetic precursors and TEC variations makes his research both scientifically rigorous and societally relevant. His innovations in methodology, especially his move towards AI integration and data-centric modeling, reflect his adaptability and forward-thinking approach.

Professional Profile

Google Scholar | Scopus | Orcid Profile

Education

Dr. Devbrat Pundhir holds a Ph.D. in Physics from Banasthali Vidyapith (Deemed University), awarded in 2018, with his thesis focused on ionospheric perturbations due to earthquakes using GPS-based Total Electron Content (TEC) measurements. He earned his M.Sc. in Physics from Dayalbagh Educational Institute (Deemed University), Agra, in 2012 with 70.1% marks. Prior to that, he completed his B.Sc. (Hons.) in Physics from the same institute in 2010, securing 68.9%. His early education was completed under the U.P. Board, where he passed his Intermediate in 2007 and High School in 2005, both with First Division.

Experience

Currently, Dr. Pundhir serves as an Assistant Professor of Physics in the Department of Applied Sciences & Humanities at Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, since January 2019. Previously, he worked as a Senior Research Fellow on a Ministry of Earth Sciences-sponsored project related to electromagnetic earthquake precursors at the Seismo-electromagnetics and Space Research Laboratory (SESRL), Agra, from 2016 to 2018, where he also taught undergraduate Engineering Physics. He earlier served as a Junior Research Fellow in a Department of Science & Technology project on Schumann Resonance phenomena. His early research experience also includes work in fiber optics, nonlinear behavior of inorganic materials, and nanostructures under the guidance of Dr. Sukhdev Roy during his M.Sc. Additionally, he has experience as a video editor in an MHRD project at Dayalbagh Educational Institute.

Skills and Expertise

Dr. Pundhir possesses strong analytical and technical skills in atmospheric physics, signal processing, and modeling using AI/ML techniques. He has hands-on expertise in GPS-TEC data analysis, ULF/VLF ground measurements, and ionospheric modeling. He has also designed a biosensor in fiber optics and conducted research on carbon nanotubes and iron oxide materials. His computer skills include certified proficiency in Computer Concepts by NIELIT and three years of practical experience in computer applications. He has developed attainment calculation software and has served as a resource for IPR and innovation-related activities in his institution.

Research Focus

Dr. Pundhir’s primary research areas lie in seismo-electromagnetics, low-latitude ionospheric modeling, and earthquake precursor detection using TEC and electromagnetic signals. His ongoing projects focus on AI-based prediction of ionospheric behavior and synthesis of metallic nanostructures. His work also explores the coupling of atmospheric and ionospheric parameters during seismic events and the use of satellite and ground-based tools for early warning systems. He has published over 35 international journal articles, co-supervised Ph.D. students, and contributed significantly to interdisciplinary research involving geophysics, space weather, and machine learning applications.

Awards and Honors

Dr. Pundhir has been recognized widely for his academic and research contributions. He has served on the Technical Program Committees of various international conferences in China and India and was appointed as Chair for multiple events. He is a life member of the Indian Geophysical Union and serves on editorial boards of international journals like the SCIREA Journal of Environment and Geosciences. He has received multiple certifications from AICTE, the Ministry of Education, and international FDPs on AI, teaching methods, and instrumentation. He has mentored students for projects funded by INSPIRE and AICTE and contributed actively to institutional innovation and IPR policies.

Publication

  • Title: Anomalous TEC variations associated with the strong Pakistan-Iran border region earthquake of 16 April 2013 at a low latitude station Agra, India
    Authors: D. Pundhir, B. Singh, O.P. Singh
    Journal: Advances in Space Research
    Year: 2014
    Citations: 30

 

  • Title: Ionospheric perturbations due to earthquakes as determined from VLF and GPS-TEC data analysis at Agra, India
    Authors: D. Singh, B. Singh, D. Pundhir
    Journal: Advances in Space Research
    Year: 2018
    Citations: 21

 

  • Title: Study of ionospheric precursors using GPS and GIM-TEC data related to earthquakes occurred on 16 April and 24 September, 2013 in Pakistan region
    Authors: D. Pundhir, B. Singh, O.P. Singh, S.K. Gupta, S.P. Karia, K.N. Pathak
    Journal: Advances in Space Research
    Year: 2017
    Citations: 19

 

  • Title: A multi-experiment approach to ascertain electromagnetic precursors of Nepal earthquakes
    Authors: S. Sharma, R.P. Singh, D. Pundhir, B. Singh
    Journal: Journal of Atmospheric and Solar-Terrestrial Physics
    Year: 2020
    Citations: 15

 

  • Title: A morphological study of low latitude ionosphere and its implication in identifying earthquake precursors
    Authors: D. Pundhir, B. Singh, O.P. Singh, S.K. Gupta
    Journal: J. Ind. Geophys. Union
    Year: 2017
    Citations: 10

Conclusion

In conclusion, Dr. Pundhir is a highly deserving candidate for the Best Researcher Award. His pioneering work on seismo-ionospheric precursors, broad publication record, and his ongoing evolution into interdisciplinary modeling highlight his scientific maturity and future leadership potential. Recognizing him with this award would not only honor his current achievements but also encourage further innovation in disaster prediction science.

Dr. Hui Yu | Data Science | Best Innovation Award

Dr. Hui Yu | Data Science | Best Innovation Award

Assoc.Prof.Dr at Institute of Mountain Hazards and Environment, CAS, China

Assoc. Prof. Dr. Hui Yu demonstrates exceptional innovation in digital-ecological systems integration, with real-world impacts across mountain development, ecological restoration, and policy planning in China. His work is characterized by strong interdisciplinary collaboration, policy relevance, and a solid foundation of scientific rigor.

Professional Profile

Education

While specific degree details were not explicitly listed, Assoc. Prof. Dr. Hui Yu holds a doctoral-level academic qualification, evident from his title and extensive research background. His advanced education laid the foundation for his specialization in environmental science, digital-intelligent planning, and ecological restoration, which he has applied extensively through national and provincial-level research initiatives.

Experience

Assoc. Prof. Dr. Hui Yu currently serves as the Deputy Director of the Technology Innovation Center for Southwest Land Space Ecological Restoration and Comprehensive Renovation, Ministry of Natural Resources (MNR), China. He is affiliated with the Institute of Mountain Hazards and Environment, Chinese Academy of Sciences. He has successfully led more than 20 significant national and provincial research projects and plays an active role in project evaluation for government initiatives, including mid-term reviews and ecological monitoring programs. His career combines research, leadership, digital innovation, and public sector consultancy.

Skills and Expertise

Dr. Hui Yu possesses interdisciplinary expertise in mountain development and planning, land consolidation, ecological restoration, digital-intelligent planning, project evaluation and management, as well as environmental carrying capacity assessment and early warning systems. He is highly skilled in data processing and digital transformation in the context of ecological and environmental planning.

Research Focus

His research is primarily centered around ecological and spatial restoration in mountainous regions, with an emphasis on comprehensive land planning. His innovative work has contributed to the development of industrial chain innovation systems in resource and environmental management. He also plays a vital role in third-party project evaluations, such as the Beautiful China Initiative and Tibet’s Five-Year Plan mid-term review, among others.

Awards and Honors

Dr. Hui Yu has been recognized with two ministerial-level scientific awards for his outstanding research contributions. He is also listed as a Sichuan Provincial Academic and Technical Leader Reserve Candidate, underlining his leadership potential in scientific and technological development in China.

Publication

  • Effects of Comprehensive Land Consolidation on Farmers’ Livelihood Under Different Terrain Gradients
    Authors: Rongshan Wan, Hui Yu, Dan Zhang, Bo Yang, Yanhong Huang
    Journal: Land
    Year: 2025
    Citations: Not yet cited (newly published)

 

  • Grass-Livestock Balance-Based Grassland Ecological Carrying Capability and Sustainable Strategy in the Yellow River Source National Park, Tibet Plateau, China
    Authors: Hui Yu, Bin-tao Liu, Gen-xu Wang, Tong-zuo Zhang, Yan Yang, Ya-qiong Lu, You-xue Xu, Min Huang, Yi Yang, Lv Zhang
    Journal: Journal of Mountain Science
    Year: 2021
    Citations: 27 citations

 

  • Driving Forces for the Spatial Reconstruction of Rural Settlements in Mountainous Areas Based on Structural Equation Models: A Case Study in Western China
    Authors: Jia Zhong, Shaoquan Liu, Min Huang, Sha Cao, Hui Yu
    Journal: Land
    Year: 2021
    Citations: 15+ citations

 

  • Water-Facing Distribution and Suitability Space for Rural Mountain Settlements Based on Fractal Theory, South-Western China
    Authors: Hui Yu, Yong Luo, Pengshan Li, Wei Dong, Shulin Yu, Xianghe Gao
    Journal: Land
    Year: 2021
    Citations: 10+ citations

 

  • Territorial Suitability Assessment and Function Zoning in the Jiuzhaigou Earthquake-Stricken Area
    Authors: Hui Yu, Miao Qiang, Shao-quan Liu
    Journal: Journal of Mountain Science
    Year: 2019
    Citations: 24 citations

Conclusion

Highly Recommended for the Best Innovation Award. His unique blend of environmental science, digital planning, and sustainable land use technologies reflects a forward-thinking and applied research approach, aligning well with the values and criteria of the award.