Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Prof. Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Faculty Membr | University of Mohaghegh Ardabili | Iran

Dr. Raziyeh Pourdarbani is a Professor of Biosystems Engineering at the University of Mohaghegh Ardabili and an internationally recognized researcher in precision agriculture, image processing, machine vision, artificial intelligence, and hyperspectral imaging. Her research is dedicated to developing advanced computational approaches that enhance automation, sustainability, and non-destructive assessment within agricultural production systems. She has established a strong scholarly footprint through extensive publications that explore cutting-edge deep learning architectures, including the application of 2D and 3D convolutional neural networks, majority voting ensemble strategies, hybrid neural networks, and metaheuristic optimization techniques for quality evaluation and decision-making in crop and fruit management. Her studies have significantly advanced non-destructive methodologies for detecting bruises, internal defects, and ripening stages in fruits, as well as monitoring excessive nitrogen consumption and estimating chemical and physicochemical properties in plant leaves using hyperspectral, visible, and near-infrared spectral data. In addition to agricultural sensing and classification research, she has contributed impactful work on sustainable bioenergy, including biomethane production from agricultural residues, biodiesel engine performance enhancement using nanomaterials, and advanced exergy and life-cycle analysis of hybrid geothermal–solar power systems. She has authored multiple academic books addressing renewable energy and intelligent grading technologies and has led numerous research projects involving automated fruit identification algorithms, orchard-based robotic systems, video-based fruit maturity estimation, spectral wavelength optimization, agricultural development modeling, and geothermal heating-system design. Dr. Pourdarbani actively disseminates her findings through national and international conferences and contributes to the scientific community through reviewing and collaborative roles in multidisciplinary research initiatives. Her work is widely acknowledged for its scientific value and practical relevance in improving agricultural resource efficiency, enhancing food-quality monitoring, and promoting environmentally responsible production strategies. As a leading figure in the integration of computational intelligence with agricultural engineering, she continues to shape research directions that support global progress toward smart, sustainable, and technologically empowered agriculture.

Profile : Google Scholar

Featured Publication

Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal–solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4).

Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J. L., & Arribas, J. I. (2019). A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties.

Pourdarbani, R., Sabzi, S., García-Amicis, V. M., García-Mateos, G., Hernández-Hernández, J. L., & Arribas, J. I. (2019). Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9(11), 672.

Ebrahimi, S., Pourdarbani, R., Sabzi, S., Rohban, M. H., & Arribas, J. I. (2023). From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. Horticulturae, 9(8), 936.

Pourdarbani, R., Sabzi, S., Rohban, M. H., Hernández-Hernández, J. L., & Arribas, J. I. (2021). One-dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves. Applied Sciences, 11(24), 11853

Joung hwan mun | Machine learning | Best Scholar Award

Prof. Dr. Joung hwan mun | Machine learning | Best Scholar Award

Professor | Sungkyunkwan University | South Korea

Professor Joung Hwan Mun, Ph.D., is a distinguished Professor in the Department of Biomechatronic Engineering at Sungkyunkwan University, Korea, where he also serves as Director of the Institute of Biotechnology and Bioengineering and the Center for Bio-Information & Communication Technology. He earned his B.S. and M.S. degrees in Biomechatronic Engineering from Sungkyunkwan University and a Ph.D. in Mechanical Engineering from The University of Iowa, USA. With a prolific academic career spanning over two decades, Dr. Mun has significantly contributed to advancing biomechatronics, biomedical engineering, and intelligent healthcare technologies. His primary research interests encompass embedded systems in healthcare, artificial intelligence applications in medical devices, Internet of Things (IoT) integration for medical systems, and wearable sensor technologies for human motion analysis. He has authored more than 250 peer-reviewed publications, including 151 journal articles and 105 conference papers, reflecting his extensive influence in biomechanics, gait analysis, and machine learning-driven motion prediction. His work on AI-based gait and fall detection models, center of pressure trajectory prediction, and exoskeleton design has been widely recognized for improving human mobility, rehabilitation, and clinical diagnostics. Dr. Mun holds over 30 international and national patents, including innovations in surgical navigation, wearable exoskeletons, and fall detection systems, demonstrating his commitment to translational research with direct societal benefits. His leadership in integrating AI, sensor fusion, and biomechanical modeling has fostered interdisciplinary collaborations across Korea, the United States, and Japan. A former Adjunct Associate Professor at The University of Iowa and Invited Associate Professor at Tokyo Denki University, Dr. Mun continues to advance next-generation biomedical systems that merge artificial intelligence and human biomechanics to enhance healthcare accessibility, safety, and quality worldwide.

Featured Publication

Oh, S. E., Choi, A., & Mun, J. H. (2013). Prediction of ground reaction forces during gait based on kinematics and a neural network model. Journal of Biomechanics, 46(14), 2372–2380.

Mun, J. H., & Youn, S. H. (2020). Apparatus and method for discriminating biological tissue, surgical apparatus using the apparatus (U.S. Patent No. 10,864,037).

Choi, A., Kim, T. H., Yuhai, O., Jeong, S., Kim, K., Kim, H., & Mun, J. H. (2022). Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2385–2394.

Park, H. J., Sim, T., Suh, S. W., Yang, J. H., Koo, H., & Mun, J. H. (2016). Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. European Spine Journal, 25(2), 385–393.

Choi, A., Lee, J. M., & Mun, J. H. (2013). Ground reaction forces predicted by using artificial neural network during asymmetric movements. International Journal of Precision Engineering and Manufacturing, 14(3), 475–483.

Choi, A., Joo, S. B., Oh, E., & Mun, J. H. (2014). Kinematic evaluation of movement smoothness in golf: Relationship between the normalized jerk cost of body joints and the clubhead. Biomedical Engineering Online, 13(1), 20.

Dr. Joung Hwan Mun’s pioneering research integrates artificial intelligence, biomechanics, and wearable sensing to advance intelligent healthcare systems and human–machine interaction. His innovations in gait analysis, fall detection, and exoskeleton technologies have significantly enhanced mobility, rehabilitation, and safety, driving global progress in personalized healthcare and biomedical engineering.

Miao Cui | Artificial Intelligence | Best Researcher Award

Prof. Miao Cui | Artificial Intelligence | Best Researcher Award

Professor |Dalian University of Technology| China

Professor Miao Cui focuses on the fields of digital transformation, innovation management, and data-driven business strategy, with extensive exploration in enterprise and community digitalization practices. Her research emphasizes how organizations orchestrate resources to adapt to digital economies, manage transformation, and foster innovation across various sectors, including state-owned enterprises, traditional manufacturing, high-tech firms, service industries, and non-profit community organizations. She has conducted in-depth case studies on more than 50 enterprises such as Haier, P&G, Inspur, and BBMW, as well as over 30 rural communities across China, providing valuable insights into digital capability development and data-oriented strategic renewal. Through her work, Miao Cui examines the interconnection between big data strategy and organizational growth, focusing on how data analysis informs decision-making, enhances resilience, and drives innovation in dynamic environments. Her studies extend to the role of information systems in enabling business transformation, ecosystem governance, and e-commerce-based social innovation, contributing significantly to both theory and practice in management sciences. Miao Cui’s research achievements include numerous high-impact publications in leading international journals such as the International Journal of Information Management, Information Systems Journal, and Journal of Strategic Information Systems, recognized as top-ranked in their field. Her scholarly contributions have been repeatedly highlighted through ESI highly cited and hot papers, reflecting the global relevance and influence of her work. Additionally, she has authored and edited multiple academic monographs, developed widely adopted management cases for Ivey Publishing, and received several awards for excellence in research and social science innovation. Her work has been cited extensively and applied in organizational and policy contexts, contributing to global discussions on digital transformation and innovation leadership. Miao Cui has 625 Citations, 26 Documents, and an h-index of 9. View h-index.

Profile: Scopus 
Featured Publication

Author(s) unknown. (2025). Collaborative innovation network embeddedness and a firm’s technological impact: Does prior networking experience matter? Journal of Technology Transfer. Cited by 1

Author(s) unknown. (2025). An integrated approach to modeling the influence of critical factors in low-carbon technology adoption by chemical enterprises in China. Journal of Environmental Management. Cited by 2

Ying Yi Tan | Smart Manufacturing | Best Researcher Award

Dr. Ying Yi Tan | Smart Manufacturing | Best Researcher Award

Research Fellow | Singapore University of Technology and Design | Singapore

Dr. Tan Ying Yi is a Research Fellow at the Singapore University of Technology and Design (SUTD) whose research lies at the intersection of digital fabrication, smart textiles, and computational design. The focus of his work is the development of digital knitting technologies and multi-material additive manufacturing methods for creating functional, mechanically graded, and intelligent textile-based systems. His investigations explore how knitted fabrics can be engineered with integrated electrical and mechanical properties, transforming traditional textiles into high-performance materials applicable to both architectural and biomedical domains. Ying Yi has played a significant role in advancing customized technical textiles for applications such as structural membranes, façade systems, prosthetic interfaces, and wearable technologies. His leadership in projects involving smart garments for body joint monitoring has contributed to innovations in digital health and human–machine interaction, demonstrating the potential of computational design and materials research to improve quality of life. Collaborative projects with institutions like SingHealth Polyclinics, Tan Tock Seng General Hospital, and Hyundai Motor Group have led to impactful real-world solutions such as smart knee braces for gait assessment and smart shirts for motion tracking. His work is characterized by an interdisciplinary approach, blending engineering precision, material science, and architectural design principles to create responsive systems that interact dynamically with users and environments. Recognized with awards for excellence in architectural membranes and advanced manufacturing, Ying Yi continues to contribute to the integration of digital fabrication, computational modeling, and soft robotics in technical textile research. His studies have been featured by major media outlets for their innovation and societal relevance, showcasing how fabric-based systems can bridge the gap between engineering and design. Citations 19 Documents 5 h-index View.

Featured Publication

Weeger, O., Sakhaei, A. H., Tan, Y. Y., Quek, Y. H., Lee, T. L., Yeung, S. K., & Kaijima, S. (2018). Nonlinear multi-scale modelling, simulation and validation of 3D knitted textiles. Applied Composite Materials, 25(4), 797–810. Citations: 43

Sakhaei, A. H., Kaijima, S., Lee, T. L., Tan, Y. Y., & Dunn, M. L. (2018). Design and investigation of a multi-material compliant ratchet-like mechanism. Mechanism and Machine Theory, 121, 184–197. Citations: 31

Gupta, S. S., Tan, Y. Y., Chia, P. Z., Pambudi, C. P., Quek, Y. H., Yogiaman, C., & Tracy, K. J. (2020). Prototyping knit tensegrity shells: A design-to-fabrication workflow. SN Applied Sciences, 2(6), 1062. Citations: 25

Do, H., Tan, Y. Y., Ramos, N., Kiendl, J., & Weeger, O. (2020). Nonlinear isogeometric multiscale simulation for design and fabrication of functionally graded knitted textiles. Composites Part B: Engineering, 202, 108416. Citations: 20

Gupta, U., Lau, J. L., Chia, P. Z., Tan, Y. Y., Ahmed, A., Tan, N. C., Soh, G. S., & Low, H. Y. (2023). All knitted and integrated soft wearable of high stretchability and sensitivity for continuous monitoring of human joint motion. Advanced Healthcare Materials, 12(21), 2202987. Citations: 17

Pal, A., Chan, W. L., Tan, Y. Y., Chia, P. Z., & Tracy, K. J. (2020). Knit concrete formwork. Proceedings of the 25th CAADRIA Conference, 1, 213–222. Citations: 7