Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Prof. Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Faculty Membr | University of Mohaghegh Ardabili | Iran

Dr. Raziyeh Pourdarbani is a Professor of Biosystems Engineering at the University of Mohaghegh Ardabili and an internationally recognized researcher in precision agriculture, image processing, machine vision, artificial intelligence, and hyperspectral imaging. Her research is dedicated to developing advanced computational approaches that enhance automation, sustainability, and non-destructive assessment within agricultural production systems. She has established a strong scholarly footprint through extensive publications that explore cutting-edge deep learning architectures, including the application of 2D and 3D convolutional neural networks, majority voting ensemble strategies, hybrid neural networks, and metaheuristic optimization techniques for quality evaluation and decision-making in crop and fruit management. Her studies have significantly advanced non-destructive methodologies for detecting bruises, internal defects, and ripening stages in fruits, as well as monitoring excessive nitrogen consumption and estimating chemical and physicochemical properties in plant leaves using hyperspectral, visible, and near-infrared spectral data. In addition to agricultural sensing and classification research, she has contributed impactful work on sustainable bioenergy, including biomethane production from agricultural residues, biodiesel engine performance enhancement using nanomaterials, and advanced exergy and life-cycle analysis of hybrid geothermal–solar power systems. She has authored multiple academic books addressing renewable energy and intelligent grading technologies and has led numerous research projects involving automated fruit identification algorithms, orchard-based robotic systems, video-based fruit maturity estimation, spectral wavelength optimization, agricultural development modeling, and geothermal heating-system design. Dr. Pourdarbani actively disseminates her findings through national and international conferences and contributes to the scientific community through reviewing and collaborative roles in multidisciplinary research initiatives. Her work is widely acknowledged for its scientific value and practical relevance in improving agricultural resource efficiency, enhancing food-quality monitoring, and promoting environmentally responsible production strategies. As a leading figure in the integration of computational intelligence with agricultural engineering, she continues to shape research directions that support global progress toward smart, sustainable, and technologically empowered agriculture.

Profile : Google Scholar

Featured Publication

Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal–solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4).

Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J. L., & Arribas, J. I. (2019). A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties.

Pourdarbani, R., Sabzi, S., García-Amicis, V. M., García-Mateos, G., Hernández-Hernández, J. L., & Arribas, J. I. (2019). Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9(11), 672.

Ebrahimi, S., Pourdarbani, R., Sabzi, S., Rohban, M. H., & Arribas, J. I. (2023). From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. Horticulturae, 9(8), 936.

Pourdarbani, R., Sabzi, S., Rohban, M. H., Hernández-Hernández, J. L., & Arribas, J. I. (2021). One-dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves. Applied Sciences, 11(24), 11853

Muhammad Asif Munir | Machine Learning | Best Researcher Award

Mr. Muhammad Asif Munir | Machine Learning | Best Researcher Award

Assistant Professor| Swedish College of Engineering and Technology | Pakistan

Dr. Muhammad Asif Munir is an accomplished researcher and academic in the field of Electrical Engineering, currently serving as an Assistant Professor at the Swedish College of Engineering and Technology, District Rahim Yar Khan, Punjab, Pakistan, and pursuing his Ph.D. at The Islamia University of Bahawalpur. His research primarily focuses on machine learning and deep learning applications in biomedical image analysis, with a particular emphasis on addressing the challenges of small and imbalanced radiomics datasets. With six peer-reviewed publications indexed in SCI and Scopus journals, including IEEE Access and Future Internet (MDPI), and a growing citation record of 56 citations (h-index: 4, i10-index: 2), Dr. Munir has demonstrated consistent academic excellence and research innovation. His notable contribution, the GSRA-KL framework, introduces a novel sparse regularized autoencoder–based methodology that significantly enhances synthetic data generation and improves the predictive accuracy of gene mutation analysis in lung cancer radiomics. This work not only contributes to the evolution of precision oncology but also exemplifies the integration of AI-driven data synthesis with clinical applications. His ongoing research explores the incorporation of explainable artificial intelligence (XAI) into radiomics for more interpretable, transparent, and reliable predictive modeling, fostering clinically explainable AI systems in healthcare. Dr. Munir’s interdisciplinary approach bridges data science, medical imaging, and clinical decision support, aiming to make AI tools both scientifically robust and ethically transparent. A member of professional organizations such as IEEE and IAENG, he remains actively engaged in promoting research collaboration and advancing the global discourse on intelligent healthcare systems. Through his scholarly contributions, Dr. Munir is significantly impacting the development of data-efficient, interpretable, and patient-centered AI frameworks, reinforcing the global transition toward smart healthcare technologies and next-generation precision medicine. His commitment to research excellence and translational impact continues to position him as a promising figure in the convergence of engineering and medical AI research.

Featured Publication

Aslam, M. A., Munir, M. A., & Cui, D. (2020). Noise removal from medical images using hybrid filters of technique. Journal of Physics: Conference Series, 1518(1), 012061.

Aslam, M. A., Xue, C., Wang, K., Chen, Y., Zhang, A., Cai, W., Ma, L., Yang, Y., Sun, X., & Munir, M. A. (2020). SVM based classification and prediction system for gastric cancer using dominant features of saliva. Nano Biomedicine and Engineering, 12(1), 1–13.

Munir, M. A., Aslam, M. A., Shafique, M., Ahmed, R., & Mehmood, Z. (2022). Deep stacked sparse autoencoders – A breast cancer classifier. Mehran University Research Journal of Engineering and Technology, 41(1), 41–52.

Aslam, M. A., Munir, M. A., Ahmad, R., Samiullah, M., Hassan, N. M., & Mahnoor, S. (2022). Deep neural networks for prediction of cardiovascular diseases. Nano Biomedicine and Engineering, 14(1).

Munir, M. A., Shah, R. A., Ali, M., Laghari, A. A., Almadhor, A., & Gadekallu, T. R. (2024). Enhancing gene mutation prediction with sparse regularized autoencoders in lung cancer radiomics analysis. IEEE Access.

Dr. Muhammad Asif Munir’s research advances intelligent healthcare by integrating machine learning and explainable AI to enhance diagnostic accuracy and transparency in medical imaging. His innovations in radiomics and synthetic data generation foster data-efficient, interpretable, and globally applicable solutions that strengthen precision oncology and next-generation healthcare systems.

Marco Capogni | Data Science | Best Researcher Award

Prof. Dr. Marco Capogni | Data Science | Best Researcher Award

Researcher | ENEA – National Institute for Ionizing Radiation Metrology | Italy

Prof. Dr. Marco Capogni’s research focuses on the precise measurement and standardization of radionuclides, with a strong emphasis on ionizing radiation metrology and its applications in medicine, industry, and environmental monitoring. He has developed and maintained primary national standards for radioactivity, collaborating with international institutions such as the Bureau International des Poids et Mesures (BIPM) and contributing to interlaboratory comparisons to ensure global consistency in radionuclide measurements. His work includes the implementation of absolute measurement techniques and computational codes such as GEANT, MCNP, Penelope, and Fluka for both direct and indirect activity determination. Marco has been actively involved in projects producing medical radionuclides like Mo-99 and Cu-64, utilizing neutron activation and absolute or relative measurement systems, and has contributed to the development of innovative sources of fusion neutrons for radioisotope production under the Sorgentina-RF project. His expertise spans gamma spectrometry, liquid scintillation counting, and coincidence counting methods, and he has served as a member of international working groups including the International Committee for Radionuclide Metrology (ICRM) and the European Metrology Network for Radiation Protection (EURAMET). Marco has led and coordinated numerous European research projects funded by EMRP and EMPIR, focusing on robust production chains for medical radionuclides, radiological early warning networks, and metrology for decommissioning nuclear facilities. He has also contributed to the training of students at the master’s and doctoral levels in physics, engineering, and medical physics, supervising multiple theses on radionuclide metrology and measurement techniques. His work has resulted in significant publications, patents, and participation in international conferences, reflecting his leadership in metrological science and nuclear applications. Marco Capogni’s contributions demonstrate a blend of experimental expertise, computational proficiency, and collaborative engagement with international metrology and research networks, addressing challenges in nuclear measurement, radioprotection, and medical isotope production. He has achieved 1,882citations, authored 133 documents, and holds an h-index of 21.

Profiles: Scopus | ORCID
Featured Publication

Capogni, M., … (2024). Assessment of impurity production upon 14 MeV fusion neutron irradiation of both natural and isotopically enriched 100Mo samples. European Physical Journal Plus.
Citations: 1

Capogni, M., … (2024). Measurements of the absolute gamma-ray emission intensities from the decay of 166Ho. Applied Radiation and Isotopes.
Citations: 2

Capogni, M., … (2024). Future of 99Mo reactor-independent supply. Nature Reviews Physics.
Citations: 3

Capogni, M., … (2023). Analytical study of low energy proton interactions in the SORGENTINA’s fusion ion source-Part II: beam-gas: SORGENTINA ion beam interactions. European Physical Journal Plus.
Citations: 2

Capogni, M., … (2023). The international reference system for beta-particle emitting radionuclides: Validation through the pilot study CCRI(II)-P1.Co-60. Applied Radiation and Isotopes.
Citations: 5

Capogni, M., … (2023). The importance of uncertainty analysis and traceable measurements in routine quantitative 90Y-PET molecular radiotherapy: A multicenter experience. Pharmaceuticals.
Citations: 1

Capogni, M., … (2023). Experimental campaign on ordinary and baritic concrete samples for the SORGENTINA-RF plant: The SRF-bioshield tests. European Physical Journal Plus.
Citations: 3

Ye Tao | Machine Learning | Best Researcher Award

Dr. Ye Tao | Machine Learning | Best Researcher Award

PhD Student | China University of Petroleum, Beijing| China

Dr Ye Tao is a dedicated researcher focusing on sedimentology, unconventional oil and gas exploration, and the integration of artificial intelligence into geological studies. His work emphasizes fine characterization and sweet spot evaluation of shale gas reservoirs, tectonic evolution, sedimentary system reconstruction, and deepwater hydrocarbon accumulation models. Ye Tao has served as principal investigator and key researcher on multiple funded projects, including studies on shale reservoir heterogeneity in the Wufeng–Longmaxi Formations, tectonic evolution of the North Uscult Basin, and migration and accumulation mechanisms in the Guyana Basin. His expertise spans seismic data interpretation, fracture classification, mechanical modeling, and stress field simulation, contributing to accurate prediction of reservoir sweet spots and caprock sealing capacity. Ye Tao has actively published in peer-reviewed journals, presenting significant contributions such as deep learning-aided shale reservoir analysis, isotope-based sea-level reconstructions, and machine learning-based carbonate fossil recognition. His interdisciplinary approach bridges geology with computer vision and artificial intelligence, providing innovative methodologies for improving exploration accuracy. Ye Tao has been awarded multiple national and institutional prizes, including first prizes at China University of Petroleum’s Graduate Academic Forum and the National Doctoral Student Academic Forum, showcasing his academic excellence and leadership. His skillset includes seismic processing, petrographic thin section analysis, carbon and oxygen isotope testing, and restoration of paleoenvironments, enabling comprehensive understanding of sedimentary processes. By applying deep learning techniques to geological data, Ye Tao is contributing to next-generation exploration strategies that enhance prediction of hydrocarbon distribution and optimize resource development. His work demonstrates strong potential for advancing both theoretical sedimentology and applied petroleum exploration, making significant impact on energy resource evaluation and development strategies in complex geological settings.

Profile:  ORCID
Featured Publication

Tao, Y., Bao, Z., & Ma, F. (2025). Analyzing key controlling factors of shale reservoir heterogeneity in “thin” stratigraphic settings: A deep learning-aided case study of the Wufeng-Longmaxi Formations, Fuyan Syncline, Northern Guizhou. Applied Computing and Geosciences, 100293.

Tao, Y., Bao, Z., Yu, J., & Li, Y. (2025). The petrophysical characteristics and controlling factors of the Wufeng Formation–Longmaxi Formation shale reservoirs in the Fuyan Syncline, Northern Guizhou. Geological Journal.

Tao, Y., Gao, D., He, Y., Ngia, N. R., Wang, M., Sun, C., Huang, X., & Wu, J. (2023). Carbon and oxygen isotopes of the Lianglitage Formation in the Tazhong area, Tarim Basin: Implications for sea-level changes and palaeomarine conditions. Geological Journal, 58, 967–980.

Tao, Y., He, Y., Zhao, Z., Wu, D., & Deng, Q. (2023). Sealing of oil-gas reservoir caprock: Destruction of shale caprock by micro-fractures. Frontiers in Earth Science, 10, 1065875.

Vandana Rajput | Machine Learning | Best Researcher Award

Ms. Vandana Rajput | Machine Learning | Best Researcher Award

Research Scholar| Netaji Subhas University of Technology | India

Ms. Vandana Rajput, currently a Research Scholar at Netaji Subhas University of Technology, am pleased to nominate myself for the Best Researcher Award. I received my B.E. (2015) and M.Tech (2017) in Information Technology from MITS, Gwalior, and gained valuable industry experience as a Senior Research Analyst at TechieShubhdeep Itsolution Pvt. Ltd. in 2019. Additionally, I served as guest faculty at MNNIT Allahabad and SRCEM colleges, sharing knowledge and guiding students. I have worked as a Junior Research Fellow (JRF) on the prestigious IIT Mandi iHub research project, which helped strengthen my expertise in machine learning and research methodology. My work involves designing innovative concepts, developing methodologies, conducting experiments, and validating results to ensure accuracy and scientific rigor. I have authored one Scopus-indexed publication and continue to contribute to research through original manuscripts. My areas of research focus on machine learning and its applications in solving real-world challenges. I remain committed to advancing research excellence and innovation, collaborating with peers, and producing high-quality, impactful work. I hereby declare that the information provided is accurate to the best of my knowledge and agree to abide by all rules, terms, and conditions of the award nomination process.

Profile:  Scopus

Featured Publication

1. Rajput, V., Jain, A., & Jain, M. (2025). An Automatic Approach for Detecting Cognitive Distortion from Spontaneous Thinking. Procedia Computer Science, 260, 768-775 Citations: 2

Ahsan Ali | Machine Learning | Best Researcher Award

Mr. Ahsan Ali | Machine Learning | Best Researcher Award

PhD Student at Tianjin University | Pakistan

Overall, Ahsan Ali emerges as a promising young researcher whose academic journey reflects both excellence and commitment to advancing the field of electrical power engineering. With a strong foundation laid through his master’s and bachelor’s degrees, he has already demonstrated the ability to translate theoretical knowledge into practical solutions. His expertise covers deep learning-based power quality disturbance classification, fault diagnosis in converters, power system protection, and renewable energy integration—areas that are of great importance in the current era of smart grids and sustainable power technologies. Beyond his academic pursuits, Ahsan has also gained valuable industrial exposure in sugar mills, cement factories, and large-scale power plants, which has enriched his applied perspective and problem-solving abilities. Furthermore, his active participation in IEEE activities, seminars, and conferences highlights his growing leadership potential. With sustained research productivity, strong collaborations, and a focus on impactful publications, Ahsan is well-prepared to become a leading figure in his domain.

Professional Profile

 Scopus 

Education

Ahsan Ali completed his Master’s degree in Electrical Power Engineering from Quaid-e-Awam University of Engineering, Science and Technology, Pakistan, with a strong academic record His master’s research was focused on the classification of power quality disturbances using advanced deep learning methods. The study addressed the increasing importance of reliable power system operation in modern electrical networks and explored the integration of Discrete Wavelet Transform and Multi-Resolution Analysis with one-dimensional convolutional neural networks. This work aimed to improve the accuracy of identifying and classifying disturbances such as sags, swells, harmonics, and transients that affect system reliability. He also earned a Bachelor of Electrical Engineering degree from the same institution. His undergraduate project involved modeling and simulating under-frequency relays for generator protection using MATLAB and Simulink, providing him with practical expertise in system reliability.

Experience

Ahsan Ali has developed a professional career in the field of electrical power systems through roles that combined technical responsibilities and applied industry learning. He worked as an Assistant Electrical Engineer at Khairpur Sugar Mills, where he supported the engineering team in resolving power disturbances, implementing protection schemes, and managing distribution systems. In a similar role at Rohri Cement Factory, he assisted in project planning and power management activities while ensuring smooth plant operations. He also gained valuable industrial training during internships at Zorlu Enerji Pakistan, where he observed wind turbine operations and grid station management, TNB Liberty Power Plant, where he studied combined cycle operations and turbine performance, and Jamshoro Power Company, where he familiarized himself with the functioning of large-scale thermal units. These experiences helped him build a strong foundation in energy production, distribution, and system reliability, combining both theoretical and practical aspects of electrical engineering in real environments.

Skills

Ahsan Ali possesses a wide range of technical and analytical skills that complement his academic and professional background in electrical engineering. He has advanced proficiency in MATLAB and Simulink for modeling, simulation, and analysis of power systems, as well as strong competence in programmable logic controller programming for industrial automation and protective arrangements. His expertise covers power system analysis, electrical distribution engineering, fault protection, renewable energy integration, and the design and control of electrical machines and drives. He has applied these skills in both academic research and industrial practice, focusing on optimizing system performance and ensuring reliability. Ahsan has also acquired certifications in advanced courses, including power system analysis, electrical distribution system engineering, and MATLAB applications. He completed specialized training in Typhoon HIL, gaining experience in power quality testing and power flow modeling. In addition, he has explored fields such as freelancing, WordPress, and graphic design to diversify his professional capabilities.

Research Focus

Ahsan Ali’s research focus centers on power system reliability and advanced diagnostic methods for modern electrical networks. His interests include fault diagnosis of high-power electronic converters, stability analysis, and the integration of renewable energy systems into existing grids. He has also worked extensively on the classification of power quality disturbances through the application of deep learning algorithms, which represents a significant contribution to intelligent power system monitoring. His publications highlight his dedication to advancing the field, with studies on PQD detection techniques, microgrid design for seaport operations, and classification models for system optimization. His research reflects a balance between theoretical development and applied engineering, addressing the challenges posed by distributed generation, energy transitions, and increasing demand for sustainable technologies. Through his projects, Ahsan has emphasized the importance of integrating artificial intelligence and machine learning into power systems to enhance fault detection, predictive maintenance, and operational decision-making.

Awards 

Ahsan Ali has earned recognition for his academic excellence, research contributions, and active participation in professional activities. He has received certificates of appreciation for organizing technical events and webinars, including recognition for his performance during the COVID-19 period, when he contributed to academic engagement through virtual platforms. He participated in poster competitions on power system fault diagnosis and was acknowledged by the IEEE QUEST Chapter for his contributions. His involvement in seminars and workshops includes presenting research on power quality disturbances classification and generator protection at national and institutional conferences, where he shared findings with peers and faculty. He has also attended multiple training programs and short courses related to industrial safety, renewable progress, technical writing, and research management. These experiences have strengthened his academic and professional profile. As an associate member of IEEE, Ahsan has demonstrated his commitment to professional growth and engagement with the global engineering community.

Publication Top Notes

Title: Comprehensive review of power quality disturbance detection and classification techniques
Journal: Computers and Electrical Engineering, Vol. 126, Article 110512

Title: Design and Analysis of Seaport Microgrid with Ship Loads
Journal: Proceedings of IEEE China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China

Title: Power Quality Disturbances (PQDs) Classification Analyzed Based on Deep Learning Technique
Journal: Journal of Computing and Biomedical Informatics, Vol. 4, Issue 1

Title: Comparative Analysis of the PWM and SPWM on Three-Phase Inverter through Different Loads and Frequencies
Journal: Journal of Computing and Biomedical Informatics, Vol. 4, Issue 2, pp. 204–220

Conclusion

Ahsan Ali is a highly suitable and deserving candidate for the Best Researcher Award in Electrical Power Engineering, given the scope and relevance of his contributions. His research consistently bridges theoretical frameworks with real-world applications, particularly in areas such as power system reliability, renewable energy, and advanced control methods. These contributions underscore his ability to design innovative solutions that can enhance system stability and sustainability. Although there remains room for growth in terms of expanding his global research impact, securing patents, and publishing in more high-impact journals, his current record already reflects a blend of academic excellence and professional dedication. His consistent engagement with international conferences and reputed journals highlights his growing presence in the research community. With his career trajectory, it is evident that he embodies the qualities of an emerging researcher whose work contributes not only to scientific advancement but also to practical technological development, making him an ideal award recipient.