Marco Capogni | Data Science | Best Researcher Award

Prof. Dr. Marco Capogni | Data Science | Best Researcher Award

Researcher | ENEA – National Institute for Ionizing Radiation Metrology | Italy

Prof. Dr. Marco Capogni’s research focuses on the precise measurement and standardization of radionuclides, with a strong emphasis on ionizing radiation metrology and its applications in medicine, industry, and environmental monitoring. He has developed and maintained primary national standards for radioactivity, collaborating with international institutions such as the Bureau International des Poids et Mesures (BIPM) and contributing to interlaboratory comparisons to ensure global consistency in radionuclide measurements. His work includes the implementation of absolute measurement techniques and computational codes such as GEANT, MCNP, Penelope, and Fluka for both direct and indirect activity determination. Marco has been actively involved in projects producing medical radionuclides like Mo-99 and Cu-64, utilizing neutron activation and absolute or relative measurement systems, and has contributed to the development of innovative sources of fusion neutrons for radioisotope production under the Sorgentina-RF project. His expertise spans gamma spectrometry, liquid scintillation counting, and coincidence counting methods, and he has served as a member of international working groups including the International Committee for Radionuclide Metrology (ICRM) and the European Metrology Network for Radiation Protection (EURAMET). Marco has led and coordinated numerous European research projects funded by EMRP and EMPIR, focusing on robust production chains for medical radionuclides, radiological early warning networks, and metrology for decommissioning nuclear facilities. He has also contributed to the training of students at the master’s and doctoral levels in physics, engineering, and medical physics, supervising multiple theses on radionuclide metrology and measurement techniques. His work has resulted in significant publications, patents, and participation in international conferences, reflecting his leadership in metrological science and nuclear applications. Marco Capogni’s contributions demonstrate a blend of experimental expertise, computational proficiency, and collaborative engagement with international metrology and research networks, addressing challenges in nuclear measurement, radioprotection, and medical isotope production. He has achieved 1,882citations, authored 133 documents, and holds an h-index of 21.

Profiles: Scopus | ORCID
Featured Publication

Capogni, M., … (2024). Assessment of impurity production upon 14 MeV fusion neutron irradiation of both natural and isotopically enriched 100Mo samples. European Physical Journal Plus.
Citations: 1

Capogni, M., … (2024). Measurements of the absolute gamma-ray emission intensities from the decay of 166Ho. Applied Radiation and Isotopes.
Citations: 2

Capogni, M., … (2024). Future of 99Mo reactor-independent supply. Nature Reviews Physics.
Citations: 3

Capogni, M., … (2023). Analytical study of low energy proton interactions in the SORGENTINA’s fusion ion source-Part II: beam-gas: SORGENTINA ion beam interactions. European Physical Journal Plus.
Citations: 2

Capogni, M., … (2023). The international reference system for beta-particle emitting radionuclides: Validation through the pilot study CCRI(II)-P1.Co-60. Applied Radiation and Isotopes.
Citations: 5

Capogni, M., … (2023). The importance of uncertainty analysis and traceable measurements in routine quantitative 90Y-PET molecular radiotherapy: A multicenter experience. Pharmaceuticals.
Citations: 1

Capogni, M., … (2023). Experimental campaign on ordinary and baritic concrete samples for the SORGENTINA-RF plant: The SRF-bioshield tests. European Physical Journal Plus.
Citations: 3

Alessandro Mazzoni | Data Science | Best Research Article Award

Dr. Alessandro Mazzoni | Data Science | Best Research Article Award

Chief of Transfusion Medicine U.O. at Azienda Ospedaliera Universitaria Pisana| Italy

The researcher demonstrates a remarkable level of excellence in the field of innovative translational medicine, particularly in the specialized areas of cord blood applications for neonatology and regenerative medicine. Their body of work reflects a thoughtful combination of laboratory experimentation with carefully designed clinical trials, ensuring that scientific discovery is meaningfully connected to patient benefit. This translational approach positions the researcher as someone capable of bridging gaps between bench and bedside, which is increasingly valued in modern medicine. A large and rigorous clinical study that evaluates the use of cord blood transfusions to reduce the risk of retinopathy of prematurity in extremely low gestational age infants. The study has already gained significant recognition, with multiple citations in a short period, underscoring its impact on pediatrics and transfusion medicine while also shaping neonatal care practices worldwide.

Professional Profile

Scopus 

Education

Although specific details of Dr. Alessandro Mazzoni’s medical education and academic training are not widely available in open sources, it is evident from his professional position and research leadership that he has undergone advanced medical and scientific training in transfusion medicine, hematology, and related clinical specialties. His role as Director of the Unit of Transfusion Medicine and Transplant Biology at the Azienda Ospedaliero-Universitaria Pisana (AOUP) suggests a strong foundation in medical sciences, clinical practice, and laboratory-based transfusion biology. Typically, such a career path involves a medical degree followed by specialization in hematology, immunohematology, or transfusion medicine, coupled with extensive postgraduate research experience. While his precise university affiliations and doctoral training are not explicitly published, his demonstrated competence in leading high-impact clinical research projects, managing critical hospital units, and contributing to innovative biomedical studies highlights a comprehensive educational background rooted in both clinical and translational medical sciences.

Experience

Dr. Alessandro Mazzoni serves as the Director of the Unit of Transfusion Medicine and Transplant Biology at the Azienda Ospedaliero-Universitaria Pisana (AOUP), located at the Cisanello campus in Pisa, Italy. In this leadership capacity, he coordinates the operational management of transfusion services, ensuring that the hospital maintains an adequate and safe supply of blood and plasma for surgical interventions, emergency departments, and outpatient services. His tenure has been marked by proactive initiatives designed to address blood shortages, including extraordinary weekend openings of the transfusion center, community-based campaigns, and collaborations with cultural organizations to promote blood donation awareness. Dr. Mazzoni has also guided his team in research-driven practices that align with the hospital’s mission to advance innovation in transplantation and transfusion science. His ability to balance administrative responsibility with direct involvement in scientific studies underscores his reputation as both a clinician and a healthcare innovator at AOUP.

Skills

Dr. Mazzoni’s professional skill set reflects a unique blend of clinical expertise, leadership ability, and research collaboration. As a transfusion medicine specialist, he possesses in-depth knowledge of blood component management, immunohematology, and transplant biology. His leadership skills are demonstrated through his capacity to oversee critical transfusion services while orchestrating large-scale public health campaigns to recruit blood and plasma donors during periods of shortage. He is highly skilled in fostering interdisciplinary collaboration, linking clinical practice with translational research in neonatal care, transplant immunology, and emerging biomedical technologies such as nanomedicine. Furthermore, his communication abilities enable him to engage effectively with the public, raising awareness about the importance of blood donation and ensuring sustained community participation. By combining administrative acumen, technical expertise, and a strong capacity for scientific collaboration, Dr. Mazzoni exemplifies the profile of a physician-scientist committed to advancing both patient care and biomedical innovation.

Research Focus

The research activities led or supported by Dr. Mazzoni reflect a strong orientation toward translational innovation in transfusion medicine and transplantation. His work has involved participation in studies exploring the use of cord blood-derived red cells to prevent retinopathy of prematurity in neonates, representing a significant advancement in neonatal intensive care. He has also contributed to pioneering investigations into nanoparticle-assisted organ perfusion, a cutting-edge strategy aimed at improving organ preservation and viability in transplant surgery. His team has been engaged in the development of novel therapeutic interventions during the COVID-19 pandemic, particularly monoclonal neutralizing antibodies, underscoring his capacity to pivot toward urgent healthcare challenges. These diverse research areas illustrate his commitment to bridging laboratory innovation with clinical application. Overall, Dr. Mazzoni’s research focuses on interventions that directly enhance patient outcomes, improve transplant success, and expand the clinical potential of advanced transfusion practices.

Awards 

Throughout his career, Dr. Alessandro Mazzoni has received significant recognition for his leadership and contributions to transfusion and transplant medicine. In 2019, under his directorship, the AOUP’s Unit of Transfusion Medicine and Transplant Biology received a prestigious award at the Italian Transplant Network’s National Congress for an outstanding abstract focused on immunogenetic analysis in kidney transplantation. This recognition highlighted the scientific rigor and collaborative spirit of his team. The AOUP’s Bone Marrow Donor Center, closely affiliated with his unit, was honored by the Italian Bone Marrow Donor Registry (IBMDR) for achieving the highest donor registration index nationwide. This award underscored the effectiveness of his team’s outreach efforts and their commitment to expanding life-saving donation networks. These accolades collectively reflect Dr. Mazzoni’s dual strengths as both a clinician and a scientific leader whose initiatives produce measurable national impact.

Publication Top Notes

Title: Cord blood transfusions in extremely low gestational age neonates to reduce severe retinopathy of prematurity: results of a prespecified interim analysis of the randomized BORN trial
Year: 2024
Citation: 14

Title: In vitro regenerative effects of a pooled pathogen-reduced lyophilized human cord blood platelet lysate for wound healing applications
Year: 2024
Citation: 1

Title: Clinical and Virological Response to Convalescent Plasma in a Chronic Lymphocytic Leukemia Patient with COVID-19 Pneumonia
Year: 2022
Citation: 5

Title: Carboxymethyl Cellulose-Based Hydrogel Film Combined with Umbilical Cord Blood Platelet gel as an Innovative Tool for Chronic Wound Management: A Pilot Clinical Study
Year: 2022
Citation: 3

Conclusion

Based on the strength, originality, and clinical relevance of the researcher’s contributions—particularly they are exceptionally well-suited for recognition through the Best Research Article Award. Their research not only presents novel biological concepts but also successfully translates these into clinical protocols with direct implications for patient outcomes. This ability to bridge scientific innovation with practical application is a rare quality that enhances their candidacy. Furthermore, the researcher’s focus on vulnerable populations, such as premature neonates and patients requiring regenerative therapies, highlights the humanitarian value of their work. By demonstrating measurable impact in both research citations and clinical relevance, they embody the qualities of an award-winning investigator. With ongoing dedication, enhanced international collaborations, and a continued emphasis on high-impact clinical studies, the candidate’s future contributions are poised to evolve into landmark research that will significantly influence global standards of healthcare and biomedical practice.