Rana Ghazali | Data Science | Best Researcher Award

Dr. Rana Ghazali | Data Science | Best Researcher Award

Researcher |McMaster University | Iran

Dr. Rana Ghazali focuses on advancing intelligent computing systems through the integration of machine learning, reinforcement learning, and large language models to optimize big data and distributed computing environments. Her work bridges the domains of cloud computing, Hadoop-based systems, and intelligent caching to enhance computational performance and resource utilization in large-scale data frameworks. She has contributed to innovative algorithms such as CLQLMRS and H-SVM-LRU for improving cache locality and intelligent cache replacement in MapReduce job scheduling, combining machine learning with distributed system optimization. Rana’s research also extends to the design and analysis of routing protocols in mobile ad hoc networks, leveraging bio-inspired algorithms such as the Ant Colony Optimization method to improve network efficiency. Her current exploration includes the application of reinforcement learning in scheduling and performance enhancement for distributed computing platforms, with additional attention to emerging paradigms like edge, fog, and serverless computing. As a researcher affiliated with the Resource Allocation and Stochastic Systems Lab at McMaster University, she contributes to cutting-edge discussions on adaptive data management, cyber and network security, and intelligent system design. Rana’s expertise further encompasses data analytics, large language models, and the intersection of artificial intelligence with real-world computing challenges. She has served as a reviewer for leading international journals including Elsevier and Wiley publications and has participated in academic collaborations that explore deep learning and resource optimization in distributed architectures. Her research endeavors consistently emphasize scalable, secure, and intelligent computational systems that advance the performance of modern data-intensive applications. Rana Ghazali has 13 citations, 2 documents, and an h-index of 2.

Featured Publication

Ghazali, R., Down, D. G. (2025). Smart data prefetching using KNN to improve Hadoop performance. EAI Endorsed Transactions on Scalable Information Systems, 12(3). Cited by 1

Ghazali, R., Adabi, S., Rezaee, A., Down, D. G., & Movaghar, A. (2023). Hadoop-oriented SVM-LRU (H-SVM-LRU): An intelligent cache replacement algorithm to improve MapReduce performance. arXiv preprint arXiv:2309.16471. Cited by 2

Ghazali, R., Adabi, S., Rezaee, A., Down, D. G., & Movaghar, A. (2022). CLQLMRS: Improving cache locality in MapReduce job scheduler using Q-learning. Journal of Cloud Computing, 9. Cited by 9

Ghazali, R., Adabi, S., Down, D. G., & Movaghar, A. (2021). A classification of Hadoop job schedulers based on performance optimization approaches. Cluster Computing, 24(4), 3381–3403. Cited by 11

Ghazali, R., Down, D. G. (2025). A systematic overview of caching mechanisms to improve Hadoop performance. Concurrency and Computation: Practice and Experience, 37(25–26), e70337.

Ye Tao | Machine Learning | Best Researcher Award

Dr. Ye Tao | Machine Learning | Best Researcher Award

PhD Student | China University of Petroleum, Beijing| China

Dr Ye Tao is a dedicated researcher focusing on sedimentology, unconventional oil and gas exploration, and the integration of artificial intelligence into geological studies. His work emphasizes fine characterization and sweet spot evaluation of shale gas reservoirs, tectonic evolution, sedimentary system reconstruction, and deepwater hydrocarbon accumulation models. Ye Tao has served as principal investigator and key researcher on multiple funded projects, including studies on shale reservoir heterogeneity in the Wufeng–Longmaxi Formations, tectonic evolution of the North Uscult Basin, and migration and accumulation mechanisms in the Guyana Basin. His expertise spans seismic data interpretation, fracture classification, mechanical modeling, and stress field simulation, contributing to accurate prediction of reservoir sweet spots and caprock sealing capacity. Ye Tao has actively published in peer-reviewed journals, presenting significant contributions such as deep learning-aided shale reservoir analysis, isotope-based sea-level reconstructions, and machine learning-based carbonate fossil recognition. His interdisciplinary approach bridges geology with computer vision and artificial intelligence, providing innovative methodologies for improving exploration accuracy. Ye Tao has been awarded multiple national and institutional prizes, including first prizes at China University of Petroleum’s Graduate Academic Forum and the National Doctoral Student Academic Forum, showcasing his academic excellence and leadership. His skillset includes seismic processing, petrographic thin section analysis, carbon and oxygen isotope testing, and restoration of paleoenvironments, enabling comprehensive understanding of sedimentary processes. By applying deep learning techniques to geological data, Ye Tao is contributing to next-generation exploration strategies that enhance prediction of hydrocarbon distribution and optimize resource development. His work demonstrates strong potential for advancing both theoretical sedimentology and applied petroleum exploration, making significant impact on energy resource evaluation and development strategies in complex geological settings.

Profile:  ORCID
Featured Publication

Tao, Y., Bao, Z., & Ma, F. (2025). Analyzing key controlling factors of shale reservoir heterogeneity in “thin” stratigraphic settings: A deep learning-aided case study of the Wufeng-Longmaxi Formations, Fuyan Syncline, Northern Guizhou. Applied Computing and Geosciences, 100293.

Tao, Y., Bao, Z., Yu, J., & Li, Y. (2025). The petrophysical characteristics and controlling factors of the Wufeng Formation–Longmaxi Formation shale reservoirs in the Fuyan Syncline, Northern Guizhou. Geological Journal.

Tao, Y., Gao, D., He, Y., Ngia, N. R., Wang, M., Sun, C., Huang, X., & Wu, J. (2023). Carbon and oxygen isotopes of the Lianglitage Formation in the Tazhong area, Tarim Basin: Implications for sea-level changes and palaeomarine conditions. Geological Journal, 58, 967–980.

Tao, Y., He, Y., Zhao, Z., Wu, D., & Deng, Q. (2023). Sealing of oil-gas reservoir caprock: Destruction of shale caprock by micro-fractures. Frontiers in Earth Science, 10, 1065875.