Daniel Atnafu Chekole | Computational Theory | Best Researcher Award

Mr. Daniel Atnafu Chekole | Computational Theory | Best Researcher Award

Researcher | Space Science and Geospatial Institute | Ethiopia

Mr. Daniel Chekole specializes in atmospheric and space physics, with focused expertise in ionospheric modeling, space weather forecasting, and heliospheric studies. His research integrates ground-based and satellite data to investigate ionospheric dynamics, magnetospheric processes, and their coupling with solar-terrestrial interactions. His scientific contributions emphasize the development and validation of regional ionospheric and atmospheric models using advanced computational methods and machine learning algorithms. Daniel has played a leading role in projects such as the development of regional HF propagation and ionospheric models, prediction of solar energetic particle flux using artificial intelligence, and the establishment of monitoring systems like the Mini-Neutron Monitor. His scholarly work explores low-frequency plasma waves, magnetohydrodynamic instabilities, and the effects of rotation and self-gravity in plasma environments, contributing to the understanding of astrophysical and geophysical plasma systems. Through publications in reputed journals, he has analyzed the performance of ionospheric models such as NeQuick-2 and IRI-Plas over East Africa, evaluated solar and geomagnetic activity indices, and examined storm-time ionospheric irregularities. His technical proficiency spans MATLAB, Python, and MHD simulation tools, which he applies in the modeling and forecasting of space weather phenomena relevant to communication and navigation systems. Daniel’s participation in international workshops and collaborations with institutions such as NASA, UCAR/CPAESS, and DLR reflects a strong engagement in the global heliophysics and space science community. His ongoing work continues to contribute to regional and international initiatives aimed at enhancing predictive capabilities for solar-terrestrial disturbances and improving understanding of ionospheric variability over equatorial regions. Daniel Chekole’s research contributions are reflected in 17 citations, 5 documents, and an h-index of 2 (View h-index).

Featured Publication

Chekole, D. A., Giday, N. M., & Nigussie, M. (2019). Performance of NeQuick-2, IRI-Plas 2017 and GIM models over Ethiopia during varying solar activity periods. Journal of Atmospheric and Solar-Terrestrial Physics, 195, 105117. Cited by 14.

Moges, S. T., Giday, N. M., Chekole, D. A., Ulich, T., & Sherstyukov, R. O. (2022). Storm-time observations of traveling ionospheric disturbances and ionospheric irregularities in East Africa. Radio Science, e2022RS007426. Cited by 7.

Strauss, R. D., Giday, N. M., Seba, E. B., Chekole, D. A., Garuma, G. F., Kassa, B. H., & others. (2023). First results from the ENTOTO neutron monitor: Quantifying the waiting time distribution. Advances in Space Research, 72(3), 805–815. Cited by 5.

Garuma, G. F., Tessema, S. B., Tiky, A. Y., Addis, Z. W., Adde, Y. A., Giday, N. M., & others. (2022). First Ethiopian Remote Sensing Satellite (ETRSS-1): Mission information and overview. Authorea Preprints. Cited by 5.

Chekole, D. A., & Giday, N. M. (2020). Evaluation of ionospheric and solar proxy indices for IRI-Plas 2017 model over the East African equatorial region during solar cycle 24. Advances in Space Research, 66(3), 604–611. Cited by 3.