Muhammad Asif Munir | Machine Learning | Best Researcher Award

Mr. Muhammad Asif Munir | Machine Learning | Best Researcher Award

Assistant Professor| Swedish College of Engineering and Technology | Pakistan

Dr. Muhammad Asif Munir is an accomplished researcher and academic in the field of Electrical Engineering, currently serving as an Assistant Professor at the Swedish College of Engineering and Technology, District Rahim Yar Khan, Punjab, Pakistan, and pursuing his Ph.D. at The Islamia University of Bahawalpur. His research primarily focuses on machine learning and deep learning applications in biomedical image analysis, with a particular emphasis on addressing the challenges of small and imbalanced radiomics datasets. With six peer-reviewed publications indexed in SCI and Scopus journals, including IEEE Access and Future Internet (MDPI), and a growing citation record of 56 citations (h-index: 4, i10-index: 2), Dr. Munir has demonstrated consistent academic excellence and research innovation. His notable contribution, the GSRA-KL framework, introduces a novel sparse regularized autoencoder–based methodology that significantly enhances synthetic data generation and improves the predictive accuracy of gene mutation analysis in lung cancer radiomics. This work not only contributes to the evolution of precision oncology but also exemplifies the integration of AI-driven data synthesis with clinical applications. His ongoing research explores the incorporation of explainable artificial intelligence (XAI) into radiomics for more interpretable, transparent, and reliable predictive modeling, fostering clinically explainable AI systems in healthcare. Dr. Munir’s interdisciplinary approach bridges data science, medical imaging, and clinical decision support, aiming to make AI tools both scientifically robust and ethically transparent. A member of professional organizations such as IEEE and IAENG, he remains actively engaged in promoting research collaboration and advancing the global discourse on intelligent healthcare systems. Through his scholarly contributions, Dr. Munir is significantly impacting the development of data-efficient, interpretable, and patient-centered AI frameworks, reinforcing the global transition toward smart healthcare technologies and next-generation precision medicine. His commitment to research excellence and translational impact continues to position him as a promising figure in the convergence of engineering and medical AI research.

Featured Publication

Aslam, M. A., Munir, M. A., & Cui, D. (2020). Noise removal from medical images using hybrid filters of technique. Journal of Physics: Conference Series, 1518(1), 012061.

Aslam, M. A., Xue, C., Wang, K., Chen, Y., Zhang, A., Cai, W., Ma, L., Yang, Y., Sun, X., & Munir, M. A. (2020). SVM based classification and prediction system for gastric cancer using dominant features of saliva. Nano Biomedicine and Engineering, 12(1), 1–13.

Munir, M. A., Aslam, M. A., Shafique, M., Ahmed, R., & Mehmood, Z. (2022). Deep stacked sparse autoencoders – A breast cancer classifier. Mehran University Research Journal of Engineering and Technology, 41(1), 41–52.

Aslam, M. A., Munir, M. A., Ahmad, R., Samiullah, M., Hassan, N. M., & Mahnoor, S. (2022). Deep neural networks for prediction of cardiovascular diseases. Nano Biomedicine and Engineering, 14(1).

Munir, M. A., Shah, R. A., Ali, M., Laghari, A. A., Almadhor, A., & Gadekallu, T. R. (2024). Enhancing gene mutation prediction with sparse regularized autoencoders in lung cancer radiomics analysis. IEEE Access.

Dr. Muhammad Asif Munir’s research advances intelligent healthcare by integrating machine learning and explainable AI to enhance diagnostic accuracy and transparency in medical imaging. His innovations in radiomics and synthetic data generation foster data-efficient, interpretable, and globally applicable solutions that strengthen precision oncology and next-generation healthcare systems.

Khaista Rahman | Artificial Intelligence| Best Paper Award

Dr. Khaista Rahman | Artificial Intelligence| Best Paper Award

Assistant Professor | Shaheed Benazir Bhutto University Sheringal | Pakistan 

Dr. Khaista Rahman is a distinguished researcher specializing in fuzzy set theory, fuzzy logic, aggregation operators, and artificial intelligence-based decision support systems, with a strong focus on solving decision-making problems under uncertainty. His work explores advanced mathematical structures like Pythagorean fuzzy numbers, interval-valued fuzzy models, and complex fuzzy systems to create robust solutions for multi-attribute group decision-making processes. Dr. Rahman has published extensively on generalized and induced aggregation operators, developing new models that enhance decision accuracy and reliability in diverse applications such as plant location selection, hospital siting during COVID-19, vaccine selection, and railway optimization problems. His research integrates t-norm and t-conorm-based approaches, Einstein hybrid operators, and logarithmic intuitionistic fuzzy techniques to handle complex decision environments. He has also supervised several M.Phil., M.Sc., and BS scholars, contributing significantly to academic mentorship and knowledge dissemination. Recognized among the top 2% scientists worldwide by Stanford University from 2022 to 2025, he has made substantial contributions to granular computing, soft computing, and intelligent systems literature. His work during the COVID-19 pandemic stands out for developing emergency response models using complex fuzzy information to predict and manage disease spread in Pakistan. As Principal Investigator of a funded project on complex intelligent decision support models, Dr. Rahman has bridged theoretical advancements with practical implementations, making his research highly impactful. With an H-index of 26 and over 1900 citations, his scholarly influence spans mathematics, operations research, and computational intelligence, providing frameworks that empower policymakers and industries to make optimal decisions in uncertain and dynamic scenarios. Dr. Khaista Rahman has achieved 776 citations across 532 documents with an impressive h-index of 16.

Profile:  Scopus | ORCID
Featured Publication
  1. Rahman, K., & Khishe, M. (2024). Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process [Retracted]. Scientific Reports, 14(1), 15253.

  2. Rahman, K., & Khishe, M. (2024). Retraction Note: Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process. Scientific Reports, 14(1).

  3. Rahman, K., et al. (2025). Unraveling vegetation diversity and environmental influences in the Sultan Kha Valley, Dir Upper, Pakistan: An advanced multivariate analysis approach. Polish Journal of Environmental Studies.

  4. Rahman, K. (2024). Some new types induced complex intuitionistic fuzzy Einstein geometric aggregation operators and their application to decision-making problem. Neural Computing and Applications.