Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Prof. Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Faculty Membr | University of Mohaghegh Ardabili | Iran

Dr. Raziyeh Pourdarbani is a Professor of Biosystems Engineering at the University of Mohaghegh Ardabili and an internationally recognized researcher in precision agriculture, image processing, machine vision, artificial intelligence, and hyperspectral imaging. Her research is dedicated to developing advanced computational approaches that enhance automation, sustainability, and non-destructive assessment within agricultural production systems. She has established a strong scholarly footprint through extensive publications that explore cutting-edge deep learning architectures, including the application of 2D and 3D convolutional neural networks, majority voting ensemble strategies, hybrid neural networks, and metaheuristic optimization techniques for quality evaluation and decision-making in crop and fruit management. Her studies have significantly advanced non-destructive methodologies for detecting bruises, internal defects, and ripening stages in fruits, as well as monitoring excessive nitrogen consumption and estimating chemical and physicochemical properties in plant leaves using hyperspectral, visible, and near-infrared spectral data. In addition to agricultural sensing and classification research, she has contributed impactful work on sustainable bioenergy, including biomethane production from agricultural residues, biodiesel engine performance enhancement using nanomaterials, and advanced exergy and life-cycle analysis of hybrid geothermal–solar power systems. She has authored multiple academic books addressing renewable energy and intelligent grading technologies and has led numerous research projects involving automated fruit identification algorithms, orchard-based robotic systems, video-based fruit maturity estimation, spectral wavelength optimization, agricultural development modeling, and geothermal heating-system design. Dr. Pourdarbani actively disseminates her findings through national and international conferences and contributes to the scientific community through reviewing and collaborative roles in multidisciplinary research initiatives. Her work is widely acknowledged for its scientific value and practical relevance in improving agricultural resource efficiency, enhancing food-quality monitoring, and promoting environmentally responsible production strategies. As a leading figure in the integration of computational intelligence with agricultural engineering, she continues to shape research directions that support global progress toward smart, sustainable, and technologically empowered agriculture.

Profile : Google Scholar

Featured Publication

Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal–solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4).

Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J. L., & Arribas, J. I. (2019). A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties.

Pourdarbani, R., Sabzi, S., García-Amicis, V. M., García-Mateos, G., Hernández-Hernández, J. L., & Arribas, J. I. (2019). Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9(11), 672.

Ebrahimi, S., Pourdarbani, R., Sabzi, S., Rohban, M. H., & Arribas, J. I. (2023). From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. Horticulturae, 9(8), 936.

Pourdarbani, R., Sabzi, S., Rohban, M. H., Hernández-Hernández, J. L., & Arribas, J. I. (2021). One-dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves. Applied Sciences, 11(24), 11853

Ying Yi Tan | Smart Manufacturing | Best Researcher Award

Dr. Ying Yi Tan | Smart Manufacturing | Best Researcher Award

Research Fellow | Singapore University of Technology and Design | Singapore

Dr. Tan Ying Yi is a Research Fellow at the Singapore University of Technology and Design (SUTD) whose research lies at the intersection of digital fabrication, smart textiles, and computational design. The focus of his work is the development of digital knitting technologies and multi-material additive manufacturing methods for creating functional, mechanically graded, and intelligent textile-based systems. His investigations explore how knitted fabrics can be engineered with integrated electrical and mechanical properties, transforming traditional textiles into high-performance materials applicable to both architectural and biomedical domains. Ying Yi has played a significant role in advancing customized technical textiles for applications such as structural membranes, façade systems, prosthetic interfaces, and wearable technologies. His leadership in projects involving smart garments for body joint monitoring has contributed to innovations in digital health and human–machine interaction, demonstrating the potential of computational design and materials research to improve quality of life. Collaborative projects with institutions like SingHealth Polyclinics, Tan Tock Seng General Hospital, and Hyundai Motor Group have led to impactful real-world solutions such as smart knee braces for gait assessment and smart shirts for motion tracking. His work is characterized by an interdisciplinary approach, blending engineering precision, material science, and architectural design principles to create responsive systems that interact dynamically with users and environments. Recognized with awards for excellence in architectural membranes and advanced manufacturing, Ying Yi continues to contribute to the integration of digital fabrication, computational modeling, and soft robotics in technical textile research. His studies have been featured by major media outlets for their innovation and societal relevance, showcasing how fabric-based systems can bridge the gap between engineering and design. Citations 19 Documents 5 h-index View.

Featured Publication

Weeger, O., Sakhaei, A. H., Tan, Y. Y., Quek, Y. H., Lee, T. L., Yeung, S. K., & Kaijima, S. (2018). Nonlinear multi-scale modelling, simulation and validation of 3D knitted textiles. Applied Composite Materials, 25(4), 797–810. Citations: 43

Sakhaei, A. H., Kaijima, S., Lee, T. L., Tan, Y. Y., & Dunn, M. L. (2018). Design and investigation of a multi-material compliant ratchet-like mechanism. Mechanism and Machine Theory, 121, 184–197. Citations: 31

Gupta, S. S., Tan, Y. Y., Chia, P. Z., Pambudi, C. P., Quek, Y. H., Yogiaman, C., & Tracy, K. J. (2020). Prototyping knit tensegrity shells: A design-to-fabrication workflow. SN Applied Sciences, 2(6), 1062. Citations: 25

Do, H., Tan, Y. Y., Ramos, N., Kiendl, J., & Weeger, O. (2020). Nonlinear isogeometric multiscale simulation for design and fabrication of functionally graded knitted textiles. Composites Part B: Engineering, 202, 108416. Citations: 20

Gupta, U., Lau, J. L., Chia, P. Z., Tan, Y. Y., Ahmed, A., Tan, N. C., Soh, G. S., & Low, H. Y. (2023). All knitted and integrated soft wearable of high stretchability and sensitivity for continuous monitoring of human joint motion. Advanced Healthcare Materials, 12(21), 2202987. Citations: 17

Pal, A., Chan, W. L., Tan, Y. Y., Chia, P. Z., & Tracy, K. J. (2020). Knit concrete formwork. Proceedings of the 25th CAADRIA Conference, 1, 213–222. Citations: 7