Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Prof. Raziyeh Pourdarbani | Artificial Intelligence | Best Paper Award

Faculty Membr | University of Mohaghegh Ardabili | Iran

Dr. Raziyeh Pourdarbani is a Professor of Biosystems Engineering at the University of Mohaghegh Ardabili and an internationally recognized researcher in precision agriculture, image processing, machine vision, artificial intelligence, and hyperspectral imaging. Her research is dedicated to developing advanced computational approaches that enhance automation, sustainability, and non-destructive assessment within agricultural production systems. She has established a strong scholarly footprint through extensive publications that explore cutting-edge deep learning architectures, including the application of 2D and 3D convolutional neural networks, majority voting ensemble strategies, hybrid neural networks, and metaheuristic optimization techniques for quality evaluation and decision-making in crop and fruit management. Her studies have significantly advanced non-destructive methodologies for detecting bruises, internal defects, and ripening stages in fruits, as well as monitoring excessive nitrogen consumption and estimating chemical and physicochemical properties in plant leaves using hyperspectral, visible, and near-infrared spectral data. In addition to agricultural sensing and classification research, she has contributed impactful work on sustainable bioenergy, including biomethane production from agricultural residues, biodiesel engine performance enhancement using nanomaterials, and advanced exergy and life-cycle analysis of hybrid geothermal–solar power systems. She has authored multiple academic books addressing renewable energy and intelligent grading technologies and has led numerous research projects involving automated fruit identification algorithms, orchard-based robotic systems, video-based fruit maturity estimation, spectral wavelength optimization, agricultural development modeling, and geothermal heating-system design. Dr. Pourdarbani actively disseminates her findings through national and international conferences and contributes to the scientific community through reviewing and collaborative roles in multidisciplinary research initiatives. Her work is widely acknowledged for its scientific value and practical relevance in improving agricultural resource efficiency, enhancing food-quality monitoring, and promoting environmentally responsible production strategies. As a leading figure in the integration of computational intelligence with agricultural engineering, she continues to shape research directions that support global progress toward smart, sustainable, and technologically empowered agriculture.

Profile : Google Scholar

Featured Publication

Alibaba, M., Pourdarbani, R., Manesh, M. H. K., Ochoa, G. V., & Forero, J. D. (2020). Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal–solar power plant based on ORC cycle using emergy concept. Heliyon, 6(4).

Pourdarbani, R., Sabzi, S., Kalantari, D., Hernández-Hernández, J. L., & Arribas, J. I. (2019). A computer vision system based on majority-voting ensemble neural network for the automatic classification of three chickpea varieties.

Pourdarbani, R., Sabzi, S., García-Amicis, V. M., García-Mateos, G., Hernández-Hernández, J. L., & Arribas, J. I. (2019). Automatic classification of chickpea varieties using computer vision techniques. Agronomy, 9(11), 672.

Ebrahimi, S., Pourdarbani, R., Sabzi, S., Rohban, M. H., & Arribas, J. I. (2023). From harvest to market: Non-destructive bruise detection in kiwifruit using convolutional neural networks and hyperspectral imaging. Horticulturae, 9(8), 936.

Pourdarbani, R., Sabzi, S., Rohban, M. H., Hernández-Hernández, J. L., & Arribas, J. I. (2021). One-dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves. Applied Sciences, 11(24), 11853

Bincy Baburaj Kaluvilla | Machine Learning | Best Researcher Award

Dr. Bincy Baburaj Kaluvilla | Machine Learning | Best Researcher Award

Head of Academics | Learners University College | United Arab Emirates

Dr. Bincy B. Kaluvilla is an accomplished academic and researcher specializing in sustainable finance, investment management, and hospitality education, with a particular emphasis on integrating environmental, social, and governance (ESG) principles into financial and hospitality frameworks. She currently serves as Head of Academics and Partnerships at Learners University College, UAE, and previously worked as Assistant Professor and Undergraduate Program Manager at the Emirates Academy of Hospitality Management, where she played a central role in program leadership, faculty coordination, and industry collaboration. Holding a Ph.D. in Accounting from the University of Leicester, an M.Res in Accounting and Finance from the University of Glasgow, and professional recognition as a Fellow of the Higher Education Academy (UK) and CPA Australia, Dr. Kaluvilla combines strong academic foundations with practical insight. Her research encompasses real estate finance, green finance, ESG reporting, and digital transformation in hospitality, contributing over fifteen peer-reviewed publications and book chapters in leading journals such as Frontiers in Computer Science, Asia Pacific Journal of Tourism Research, and Library Hi Tech News, with growing citation impact across Scopus and Web of Science databases. She has authored chapters for major publishers including Springer Nature, Emerald, IGI Global, and Apple Academic Press, addressing emerging issues in sustainable investment, digital currencies, and responsible finance. Her academic influence extends globally through conference presentations at EuroCHRIE in Vienna, GHLS in Dubai, and IPoE in the UAE. Beyond research, she has led significant corporate training initiatives with the Jumeirah Group, Omran Group, and the UAE Ministry of Foreign Affairs, advancing professional development and gender empowerment within the hospitality industry. Through her research, teaching, and leadership, Dr. Kaluvilla continues to advance global understanding of sustainable finance and investment practices, fostering stronger links between academia, industry, and community development.

Featured Publication

Fahad, Z., Kaluvilla, B. B., & Mulla, T. (2024). Embracing the new era: Artificial intelligence and its multifaceted impact on the hospitality industry. Journal of Open Innovation: Technology, Market, and Complexity, 10(4), 100390.

Ghazanfar, U., Kaluvilla, B. B., & Zahidi, F. (2023). The post-COVID emergence of dark kitchens: A qualitative analysis of acceptance and the advantages and challenges. Research in Hospitality Management, 13(1), 23–30.

Kaluvilla, B. B. (2024). Cultural preservation through technology in UAE libraries. Library Hi Tech News, 41(8), 6–9.

Kalarikkal, S. A., Thamilvannan, G., & Kaluvilla, B. B. (2024). Enhancing access to missionary archives: The role of digital libraries and online repositories. Library Hi Tech News.

Kaluvilla, B. B., Mulla, T., Zahidi, F., & Wondirad, A. (2024). Driving sustainable choices through understanding consumer behaviour and underlying factors that influence the purchasing intention of refurbished furniture. SSRN Electronic Journal.

Md. Habibullah Shakib | Machine Learning | Best Researcher Award

Mr. Md. Habibullah Shakib | Machine Learning | Best Researcher Award

Researcher| World University of Bangladesh| Bangladesh

Mr. Md. Habibullah Shakib is an emerging researcher and analyst from Bangladesh with over 3.5 years of research experience in artificial intelligence, supervised and deep learning, genetic AI, and foundation models. He holds a Bachelor of Science in Computer Science and Engineering from the World University of Bangladesh and a Diploma in Computer Technology from the National Polytechnic Institute. His research focuses on developing intelligent and secure computing systems, with significant contributions to Android malware detection, federated learning, autonomous systems, and IoT-based smart home automation. Among his key projects are the Active Federated YOLOR Model for enhancing autonomous vehicle safety, deep learning and genetic AI approaches for Android malware detection, and the integration of Conformer, Active Learning, and Federated Learning models for encrypted malware traffic detection. His ongoing work on Autonomous Generative AI for Android malware detection reflects his interest in advancing cutting-edge AI-driven cybersecurity solutions. Recognized for his scholarly engagement, he received a Certificate of Reviewing from the Information Processing and Management journal (Elsevier, 2024). He has built a growing academic presence with profiles on Google Scholar, ORCID, SSRN, GitHub, and the AD Scientific Index. Fluent in Bangla and English, he combines strong analytical and organizational skills with a commitment to innovation and teamwork. Through his dedication to ethical AI development, quantitative data analysis, and research collaboration, Md. Habibullah Shakib aims to contribute globally to the progress of intelligent systems, data-driven decision-making, and digital security for sustainable technological advancement.

Featured Publication

Shakib, M. (2023). Android malware detection approach based on genetic AI, CNN, RNN, LSTM, GRU, and active learning. SSRN. Cited by: 1

Shakib, M. H., Yeasin, M., Rahman, M. H., Rahman, K. M., Hossain, S., & Mahi, F. F. (2025). Active learning model used for Android malware detection. Machine Learning with Applications, 100680. Cited by: 8

Shakib, M. D. H. (2024). Android malware detection using transformer and encoder models. SSRN. Cited by: 5

Shakib, M. H. (2024). Comparing conformer, genetic artificial intelligence conformer, and active learning conformer approaches for encrypted Android malware traffic detection. SSRN. Cited by: 4

Khaista Rahman | Artificial Intelligence| Best Paper Award

Dr. Khaista Rahman | Artificial Intelligence| Best Paper Award

Assistant Professor | Shaheed Benazir Bhutto University Sheringal | Pakistan 

Dr. Khaista Rahman is a distinguished researcher specializing in fuzzy set theory, fuzzy logic, aggregation operators, and artificial intelligence-based decision support systems, with a strong focus on solving decision-making problems under uncertainty. His work explores advanced mathematical structures like Pythagorean fuzzy numbers, interval-valued fuzzy models, and complex fuzzy systems to create robust solutions for multi-attribute group decision-making processes. Dr. Rahman has published extensively on generalized and induced aggregation operators, developing new models that enhance decision accuracy and reliability in diverse applications such as plant location selection, hospital siting during COVID-19, vaccine selection, and railway optimization problems. His research integrates t-norm and t-conorm-based approaches, Einstein hybrid operators, and logarithmic intuitionistic fuzzy techniques to handle complex decision environments. He has also supervised several M.Phil., M.Sc., and BS scholars, contributing significantly to academic mentorship and knowledge dissemination. Recognized among the top 2% scientists worldwide by Stanford University from 2022 to 2025, he has made substantial contributions to granular computing, soft computing, and intelligent systems literature. His work during the COVID-19 pandemic stands out for developing emergency response models using complex fuzzy information to predict and manage disease spread in Pakistan. As Principal Investigator of a funded project on complex intelligent decision support models, Dr. Rahman has bridged theoretical advancements with practical implementations, making his research highly impactful. With an H-index of 26 and over 1900 citations, his scholarly influence spans mathematics, operations research, and computational intelligence, providing frameworks that empower policymakers and industries to make optimal decisions in uncertain and dynamic scenarios. Dr. Khaista Rahman has achieved 776 citations across 532 documents with an impressive h-index of 16.

Profile:  Scopus | ORCID
Featured Publication
  1. Rahman, K., & Khishe, M. (2024). Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process [Retracted]. Scientific Reports, 14(1), 15253.

  2. Rahman, K., & Khishe, M. (2024). Retraction Note: Confidence level based complex polytopic fuzzy Einstein aggregation operators and their application to decision-making process. Scientific Reports, 14(1).

  3. Rahman, K., et al. (2025). Unraveling vegetation diversity and environmental influences in the Sultan Kha Valley, Dir Upper, Pakistan: An advanced multivariate analysis approach. Polish Journal of Environmental Studies.

  4. Rahman, K. (2024). Some new types induced complex intuitionistic fuzzy Einstein geometric aggregation operators and their application to decision-making problem. Neural Computing and Applications.