Muhammad Asif Munir | Machine Learning | Best Researcher Award

Mr. Muhammad Asif Munir | Machine Learning | Best Researcher Award

Assistant Professor| Swedish College of Engineering and Technology | Pakistan

Dr. Muhammad Asif Munir is an accomplished researcher and academic in the field of Electrical Engineering, currently serving as an Assistant Professor at the Swedish College of Engineering and Technology, District Rahim Yar Khan, Punjab, Pakistan, and pursuing his Ph.D. at The Islamia University of Bahawalpur. His research primarily focuses on machine learning and deep learning applications in biomedical image analysis, with a particular emphasis on addressing the challenges of small and imbalanced radiomics datasets. With six peer-reviewed publications indexed in SCI and Scopus journals, including IEEE Access and Future Internet (MDPI), and a growing citation record of 56 citations (h-index: 4, i10-index: 2), Dr. Munir has demonstrated consistent academic excellence and research innovation. His notable contribution, the GSRA-KL framework, introduces a novel sparse regularized autoencoder–based methodology that significantly enhances synthetic data generation and improves the predictive accuracy of gene mutation analysis in lung cancer radiomics. This work not only contributes to the evolution of precision oncology but also exemplifies the integration of AI-driven data synthesis with clinical applications. His ongoing research explores the incorporation of explainable artificial intelligence (XAI) into radiomics for more interpretable, transparent, and reliable predictive modeling, fostering clinically explainable AI systems in healthcare. Dr. Munir’s interdisciplinary approach bridges data science, medical imaging, and clinical decision support, aiming to make AI tools both scientifically robust and ethically transparent. A member of professional organizations such as IEEE and IAENG, he remains actively engaged in promoting research collaboration and advancing the global discourse on intelligent healthcare systems. Through his scholarly contributions, Dr. Munir is significantly impacting the development of data-efficient, interpretable, and patient-centered AI frameworks, reinforcing the global transition toward smart healthcare technologies and next-generation precision medicine. His commitment to research excellence and translational impact continues to position him as a promising figure in the convergence of engineering and medical AI research.

Featured Publication

Aslam, M. A., Munir, M. A., & Cui, D. (2020). Noise removal from medical images using hybrid filters of technique. Journal of Physics: Conference Series, 1518(1), 012061.

Aslam, M. A., Xue, C., Wang, K., Chen, Y., Zhang, A., Cai, W., Ma, L., Yang, Y., Sun, X., & Munir, M. A. (2020). SVM based classification and prediction system for gastric cancer using dominant features of saliva. Nano Biomedicine and Engineering, 12(1), 1–13.

Munir, M. A., Aslam, M. A., Shafique, M., Ahmed, R., & Mehmood, Z. (2022). Deep stacked sparse autoencoders – A breast cancer classifier. Mehran University Research Journal of Engineering and Technology, 41(1), 41–52.

Aslam, M. A., Munir, M. A., Ahmad, R., Samiullah, M., Hassan, N. M., & Mahnoor, S. (2022). Deep neural networks for prediction of cardiovascular diseases. Nano Biomedicine and Engineering, 14(1).

Munir, M. A., Shah, R. A., Ali, M., Laghari, A. A., Almadhor, A., & Gadekallu, T. R. (2024). Enhancing gene mutation prediction with sparse regularized autoencoders in lung cancer radiomics analysis. IEEE Access.

Dr. Muhammad Asif Munir’s research advances intelligent healthcare by integrating machine learning and explainable AI to enhance diagnostic accuracy and transparency in medical imaging. His innovations in radiomics and synthetic data generation foster data-efficient, interpretable, and globally applicable solutions that strengthen precision oncology and next-generation healthcare systems.

Hawazin Elani | Machine Learning | Best Researcher Award

Dr. Hawazin Elani | Machine Learning | Best Researcher Award

Harvard University | United States

Dr. Hawazin W. Elani, Ph.D., is an accomplished scholar and academic leader whose research integrates dentistry, epidemiology, and health policy to advance oral health equity through data-driven, interdisciplinary approaches. She serves as an Associate Professor in the Department of Health Policy and Management at the Harvard T.H. Chan School of Public Health and in the Department of Oral Health Policy and Epidemiology at the Harvard School of Dental Medicine, with additional affiliations at the Harvard Data Science Initiative and the Kempner Institute for the Study of Natural and Artificial Intelligence. Dr. Elani earned her Ph.D. in Dental Sciences with a concentration in Epidemiology and Population Health and an M.Sc. from McGill University, as well as an MMSc in Oral Biology and a Clinical Certificate in Prosthodontics from Harvard. Her research explores health disparities, oral health policy, and the application of artificial intelligence and machine learning in predicting oral health outcomes. She has authored over 30 peer-reviewed publications in high-impact journals such as Health Services Research, JAMA Network Open, and Journal of Dental Research, with her work cited widely for shaping discussions on healthcare access and reform. As principal investigator on multiple NIH and foundation-funded projects, including R01 and K-series grants, she has led innovative studies assessing the effects of Medicaid expansion and socioeconomic factors on dental care utilization. Recognized with Harvard’s Young Mentor Award and Distinguished Junior Faculty Award in 2024, Dr. Elani also contributes to national and international committees, including the NIH, the National Academies of Sciences, and the Medicaid Policy Research Advisory Group. Through her leadership, global collaborations, and dedication to mentoring, she continues to advance the intersection of artificial intelligence, population health, and oral health policy, driving forward equitable and sustainable improvements in healthcare delivery worldwide.

Profiles: Scopus | ORCID
Featured Publication

lani, H. W., Kawachi, I., & Sommers, B. D. (2020). Changes in emergency department dental visits after Medicaid expansion. Health Services Research, 55(1), 76–84.

Elani, H. W., Simon, L., Ticku, S., Bain, P. A., Barrow, J., & Riedy, C. A. (2018). Does providing dental services reduce overall health care costs? A systematic review of the literature. Journal of the American Dental Association (1939), 149(6), 430–438.e10.

Elani, H. W., Starr, J. R., Da Silva, J. D., & Gallucci, G. O. (2018). Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. Journal of Dental Research, 97(13), 1424–1430.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., Cleber, S., & Bittner, N. (2019). Comparison of the color appearance of peri-implant soft tissue with natural gingiva using anodized pink-neck implants and pink abutments: A prospective clinical trial. The International Journal of Oral & Maxillofacial Implants, 34(1), 168–175.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., & Bittner, N. (2017). A prospective clinical trial to assess the optical efficacy of pink neck implants and pink abutments on soft tissue esthetics. Journal of Esthetic and Restorative Dentistry, 29(3), 213–219.

Miao Cui | Artificial Intelligence | Best Researcher Award

Prof. Miao Cui | Artificial Intelligence | Best Researcher Award

Professor |Dalian University of Technology| China

Professor Miao Cui focuses on the fields of digital transformation, innovation management, and data-driven business strategy, with extensive exploration in enterprise and community digitalization practices. Her research emphasizes how organizations orchestrate resources to adapt to digital economies, manage transformation, and foster innovation across various sectors, including state-owned enterprises, traditional manufacturing, high-tech firms, service industries, and non-profit community organizations. She has conducted in-depth case studies on more than 50 enterprises such as Haier, P&G, Inspur, and BBMW, as well as over 30 rural communities across China, providing valuable insights into digital capability development and data-oriented strategic renewal. Through her work, Miao Cui examines the interconnection between big data strategy and organizational growth, focusing on how data analysis informs decision-making, enhances resilience, and drives innovation in dynamic environments. Her studies extend to the role of information systems in enabling business transformation, ecosystem governance, and e-commerce-based social innovation, contributing significantly to both theory and practice in management sciences. Miao Cui’s research achievements include numerous high-impact publications in leading international journals such as the International Journal of Information Management, Information Systems Journal, and Journal of Strategic Information Systems, recognized as top-ranked in their field. Her scholarly contributions have been repeatedly highlighted through ESI highly cited and hot papers, reflecting the global relevance and influence of her work. Additionally, she has authored and edited multiple academic monographs, developed widely adopted management cases for Ivey Publishing, and received several awards for excellence in research and social science innovation. Her work has been cited extensively and applied in organizational and policy contexts, contributing to global discussions on digital transformation and innovation leadership. Miao Cui has 625 Citations, 26 Documents, and an h-index of 9. View h-index.

Profile: Scopus 
Featured Publication

Author(s) unknown. (2025). Collaborative innovation network embeddedness and a firm’s technological impact: Does prior networking experience matter? Journal of Technology Transfer. Cited by 1

Author(s) unknown. (2025). An integrated approach to modeling the influence of critical factors in low-carbon technology adoption by chemical enterprises in China. Journal of Environmental Management. Cited by 2

Ahsan Ali | Machine Learning | Best Researcher Award

Mr. Ahsan Ali | Machine Learning | Best Researcher Award

PhD Student at Tianjin University | Pakistan

Overall, Ahsan Ali emerges as a promising young researcher whose academic journey reflects both excellence and commitment to advancing the field of electrical power engineering. With a strong foundation laid through his master’s and bachelor’s degrees, he has already demonstrated the ability to translate theoretical knowledge into practical solutions. His expertise covers deep learning-based power quality disturbance classification, fault diagnosis in converters, power system protection, and renewable energy integration—areas that are of great importance in the current era of smart grids and sustainable power technologies. Beyond his academic pursuits, Ahsan has also gained valuable industrial exposure in sugar mills, cement factories, and large-scale power plants, which has enriched his applied perspective and problem-solving abilities. Furthermore, his active participation in IEEE activities, seminars, and conferences highlights his growing leadership potential. With sustained research productivity, strong collaborations, and a focus on impactful publications, Ahsan is well-prepared to become a leading figure in his domain.

Professional Profile

 Scopus 

Education

Ahsan Ali completed his Master’s degree in Electrical Power Engineering from Quaid-e-Awam University of Engineering, Science and Technology, Pakistan, with a strong academic record His master’s research was focused on the classification of power quality disturbances using advanced deep learning methods. The study addressed the increasing importance of reliable power system operation in modern electrical networks and explored the integration of Discrete Wavelet Transform and Multi-Resolution Analysis with one-dimensional convolutional neural networks. This work aimed to improve the accuracy of identifying and classifying disturbances such as sags, swells, harmonics, and transients that affect system reliability. He also earned a Bachelor of Electrical Engineering degree from the same institution. His undergraduate project involved modeling and simulating under-frequency relays for generator protection using MATLAB and Simulink, providing him with practical expertise in system reliability.

Experience

Ahsan Ali has developed a professional career in the field of electrical power systems through roles that combined technical responsibilities and applied industry learning. He worked as an Assistant Electrical Engineer at Khairpur Sugar Mills, where he supported the engineering team in resolving power disturbances, implementing protection schemes, and managing distribution systems. In a similar role at Rohri Cement Factory, he assisted in project planning and power management activities while ensuring smooth plant operations. He also gained valuable industrial training during internships at Zorlu Enerji Pakistan, where he observed wind turbine operations and grid station management, TNB Liberty Power Plant, where he studied combined cycle operations and turbine performance, and Jamshoro Power Company, where he familiarized himself with the functioning of large-scale thermal units. These experiences helped him build a strong foundation in energy production, distribution, and system reliability, combining both theoretical and practical aspects of electrical engineering in real environments.

Skills

Ahsan Ali possesses a wide range of technical and analytical skills that complement his academic and professional background in electrical engineering. He has advanced proficiency in MATLAB and Simulink for modeling, simulation, and analysis of power systems, as well as strong competence in programmable logic controller programming for industrial automation and protective arrangements. His expertise covers power system analysis, electrical distribution engineering, fault protection, renewable energy integration, and the design and control of electrical machines and drives. He has applied these skills in both academic research and industrial practice, focusing on optimizing system performance and ensuring reliability. Ahsan has also acquired certifications in advanced courses, including power system analysis, electrical distribution system engineering, and MATLAB applications. He completed specialized training in Typhoon HIL, gaining experience in power quality testing and power flow modeling. In addition, he has explored fields such as freelancing, WordPress, and graphic design to diversify his professional capabilities.

Research Focus

Ahsan Ali’s research focus centers on power system reliability and advanced diagnostic methods for modern electrical networks. His interests include fault diagnosis of high-power electronic converters, stability analysis, and the integration of renewable energy systems into existing grids. He has also worked extensively on the classification of power quality disturbances through the application of deep learning algorithms, which represents a significant contribution to intelligent power system monitoring. His publications highlight his dedication to advancing the field, with studies on PQD detection techniques, microgrid design for seaport operations, and classification models for system optimization. His research reflects a balance between theoretical development and applied engineering, addressing the challenges posed by distributed generation, energy transitions, and increasing demand for sustainable technologies. Through his projects, Ahsan has emphasized the importance of integrating artificial intelligence and machine learning into power systems to enhance fault detection, predictive maintenance, and operational decision-making.

Awards 

Ahsan Ali has earned recognition for his academic excellence, research contributions, and active participation in professional activities. He has received certificates of appreciation for organizing technical events and webinars, including recognition for his performance during the COVID-19 period, when he contributed to academic engagement through virtual platforms. He participated in poster competitions on power system fault diagnosis and was acknowledged by the IEEE QUEST Chapter for his contributions. His involvement in seminars and workshops includes presenting research on power quality disturbances classification and generator protection at national and institutional conferences, where he shared findings with peers and faculty. He has also attended multiple training programs and short courses related to industrial safety, renewable progress, technical writing, and research management. These experiences have strengthened his academic and professional profile. As an associate member of IEEE, Ahsan has demonstrated his commitment to professional growth and engagement with the global engineering community.

Publication Top Notes

Title: Comprehensive review of power quality disturbance detection and classification techniques
Journal: Computers and Electrical Engineering, Vol. 126, Article 110512

Title: Design and Analysis of Seaport Microgrid with Ship Loads
Journal: Proceedings of IEEE China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China

Title: Power Quality Disturbances (PQDs) Classification Analyzed Based on Deep Learning Technique
Journal: Journal of Computing and Biomedical Informatics, Vol. 4, Issue 1

Title: Comparative Analysis of the PWM and SPWM on Three-Phase Inverter through Different Loads and Frequencies
Journal: Journal of Computing and Biomedical Informatics, Vol. 4, Issue 2, pp. 204–220

Conclusion

Ahsan Ali is a highly suitable and deserving candidate for the Best Researcher Award in Electrical Power Engineering, given the scope and relevance of his contributions. His research consistently bridges theoretical frameworks with real-world applications, particularly in areas such as power system reliability, renewable energy, and advanced control methods. These contributions underscore his ability to design innovative solutions that can enhance system stability and sustainability. Although there remains room for growth in terms of expanding his global research impact, securing patents, and publishing in more high-impact journals, his current record already reflects a blend of academic excellence and professional dedication. His consistent engagement with international conferences and reputed journals highlights his growing presence in the research community. With his career trajectory, it is evident that he embodies the qualities of an emerging researcher whose work contributes not only to scientific advancement but also to practical technological development, making him an ideal award recipient.