Hawazin Elani | Machine Learning | Best Researcher Award

Dr. Hawazin Elani | Machine Learning | Best Researcher Award

Harvard University | United States

Dr. Hawazin W. Elani, Ph.D., is an accomplished scholar and academic leader whose research integrates dentistry, epidemiology, and health policy to advance oral health equity through data-driven, interdisciplinary approaches. She serves as an Associate Professor in the Department of Health Policy and Management at the Harvard T.H. Chan School of Public Health and in the Department of Oral Health Policy and Epidemiology at the Harvard School of Dental Medicine, with additional affiliations at the Harvard Data Science Initiative and the Kempner Institute for the Study of Natural and Artificial Intelligence. Dr. Elani earned her Ph.D. in Dental Sciences with a concentration in Epidemiology and Population Health and an M.Sc. from McGill University, as well as an MMSc in Oral Biology and a Clinical Certificate in Prosthodontics from Harvard. Her research explores health disparities, oral health policy, and the application of artificial intelligence and machine learning in predicting oral health outcomes. She has authored over 30 peer-reviewed publications in high-impact journals such as Health Services Research, JAMA Network Open, and Journal of Dental Research, with her work cited widely for shaping discussions on healthcare access and reform. As principal investigator on multiple NIH and foundation-funded projects, including R01 and K-series grants, she has led innovative studies assessing the effects of Medicaid expansion and socioeconomic factors on dental care utilization. Recognized with Harvard’s Young Mentor Award and Distinguished Junior Faculty Award in 2024, Dr. Elani also contributes to national and international committees, including the NIH, the National Academies of Sciences, and the Medicaid Policy Research Advisory Group. Through her leadership, global collaborations, and dedication to mentoring, she continues to advance the intersection of artificial intelligence, population health, and oral health policy, driving forward equitable and sustainable improvements in healthcare delivery worldwide.

Profiles: Scopus | ORCID
Featured Publication

lani, H. W., Kawachi, I., & Sommers, B. D. (2020). Changes in emergency department dental visits after Medicaid expansion. Health Services Research, 55(1), 76–84.

Elani, H. W., Simon, L., Ticku, S., Bain, P. A., Barrow, J., & Riedy, C. A. (2018). Does providing dental services reduce overall health care costs? A systematic review of the literature. Journal of the American Dental Association (1939), 149(6), 430–438.e10.

Elani, H. W., Starr, J. R., Da Silva, J. D., & Gallucci, G. O. (2018). Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. Journal of Dental Research, 97(13), 1424–1430.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., Cleber, S., & Bittner, N. (2019). Comparison of the color appearance of peri-implant soft tissue with natural gingiva using anodized pink-neck implants and pink abutments: A prospective clinical trial. The International Journal of Oral & Maxillofacial Implants, 34(1), 168–175.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., & Bittner, N. (2017). A prospective clinical trial to assess the optical efficacy of pink neck implants and pink abutments on soft tissue esthetics. Journal of Esthetic and Restorative Dentistry, 29(3), 213–219.

Miao Cui | Artificial Intelligence | Best Researcher Award

Prof. Miao Cui | Artificial Intelligence | Best Researcher Award

Professor |Dalian University of Technology| China

Professor Miao Cui focuses on the fields of digital transformation, innovation management, and data-driven business strategy, with extensive exploration in enterprise and community digitalization practices. Her research emphasizes how organizations orchestrate resources to adapt to digital economies, manage transformation, and foster innovation across various sectors, including state-owned enterprises, traditional manufacturing, high-tech firms, service industries, and non-profit community organizations. She has conducted in-depth case studies on more than 50 enterprises such as Haier, P&G, Inspur, and BBMW, as well as over 30 rural communities across China, providing valuable insights into digital capability development and data-oriented strategic renewal. Through her work, Miao Cui examines the interconnection between big data strategy and organizational growth, focusing on how data analysis informs decision-making, enhances resilience, and drives innovation in dynamic environments. Her studies extend to the role of information systems in enabling business transformation, ecosystem governance, and e-commerce-based social innovation, contributing significantly to both theory and practice in management sciences. Miao Cui’s research achievements include numerous high-impact publications in leading international journals such as the International Journal of Information Management, Information Systems Journal, and Journal of Strategic Information Systems, recognized as top-ranked in their field. Her scholarly contributions have been repeatedly highlighted through ESI highly cited and hot papers, reflecting the global relevance and influence of her work. Additionally, she has authored and edited multiple academic monographs, developed widely adopted management cases for Ivey Publishing, and received several awards for excellence in research and social science innovation. Her work has been cited extensively and applied in organizational and policy contexts, contributing to global discussions on digital transformation and innovation leadership. Miao Cui has 625 Citations, 26 Documents, and an h-index of 9. View h-index.

Profile: Scopus 
Featured Publication

Author(s) unknown. (2025). Collaborative innovation network embeddedness and a firm’s technological impact: Does prior networking experience matter? Journal of Technology Transfer. Cited by 1

Author(s) unknown. (2025). An integrated approach to modeling the influence of critical factors in low-carbon technology adoption by chemical enterprises in China. Journal of Environmental Management. Cited by 2