Joung hwan mun | Machine learning | Best Scholar Award

Prof. Dr. Joung hwan mun | Machine learning | Best Scholar Award

Professor | Sungkyunkwan University | South Korea

Professor Joung Hwan Mun, Ph.D., is a distinguished Professor in the Department of Biomechatronic Engineering at Sungkyunkwan University, Korea, where he also serves as Director of the Institute of Biotechnology and Bioengineering and the Center for Bio-Information & Communication Technology. He earned his B.S. and M.S. degrees in Biomechatronic Engineering from Sungkyunkwan University and a Ph.D. in Mechanical Engineering from The University of Iowa, USA. With a prolific academic career spanning over two decades, Dr. Mun has significantly contributed to advancing biomechatronics, biomedical engineering, and intelligent healthcare technologies. His primary research interests encompass embedded systems in healthcare, artificial intelligence applications in medical devices, Internet of Things (IoT) integration for medical systems, and wearable sensor technologies for human motion analysis. He has authored more than 250 peer-reviewed publications, including 151 journal articles and 105 conference papers, reflecting his extensive influence in biomechanics, gait analysis, and machine learning-driven motion prediction. His work on AI-based gait and fall detection models, center of pressure trajectory prediction, and exoskeleton design has been widely recognized for improving human mobility, rehabilitation, and clinical diagnostics. Dr. Mun holds over 30 international and national patents, including innovations in surgical navigation, wearable exoskeletons, and fall detection systems, demonstrating his commitment to translational research with direct societal benefits. His leadership in integrating AI, sensor fusion, and biomechanical modeling has fostered interdisciplinary collaborations across Korea, the United States, and Japan. A former Adjunct Associate Professor at The University of Iowa and Invited Associate Professor at Tokyo Denki University, Dr. Mun continues to advance next-generation biomedical systems that merge artificial intelligence and human biomechanics to enhance healthcare accessibility, safety, and quality worldwide.

Featured Publication

Oh, S. E., Choi, A., & Mun, J. H. (2013). Prediction of ground reaction forces during gait based on kinematics and a neural network model. Journal of Biomechanics, 46(14), 2372–2380.

Mun, J. H., & Youn, S. H. (2020). Apparatus and method for discriminating biological tissue, surgical apparatus using the apparatus (U.S. Patent No. 10,864,037).

Choi, A., Kim, T. H., Yuhai, O., Jeong, S., Kim, K., Kim, H., & Mun, J. H. (2022). Deep learning-based near-fall detection algorithm for fall risk monitoring system using a single inertial measurement unit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2385–2394.

Park, H. J., Sim, T., Suh, S. W., Yang, J. H., Koo, H., & Mun, J. H. (2016). Analysis of coordination between thoracic and pelvic kinematic movements during gait in adolescents with idiopathic scoliosis. European Spine Journal, 25(2), 385–393.

Choi, A., Lee, J. M., & Mun, J. H. (2013). Ground reaction forces predicted by using artificial neural network during asymmetric movements. International Journal of Precision Engineering and Manufacturing, 14(3), 475–483.

Choi, A., Joo, S. B., Oh, E., & Mun, J. H. (2014). Kinematic evaluation of movement smoothness in golf: Relationship between the normalized jerk cost of body joints and the clubhead. Biomedical Engineering Online, 13(1), 20.

Dr. Joung Hwan Mun’s pioneering research integrates artificial intelligence, biomechanics, and wearable sensing to advance intelligent healthcare systems and human–machine interaction. His innovations in gait analysis, fall detection, and exoskeleton technologies have significantly enhanced mobility, rehabilitation, and safety, driving global progress in personalized healthcare and biomedical engineering.

Hawazin Elani | Machine Learning | Best Researcher Award

Dr. Hawazin Elani | Machine Learning | Best Researcher Award

Harvard University | United States

Dr. Hawazin W. Elani, Ph.D., is an accomplished scholar and academic leader whose research integrates dentistry, epidemiology, and health policy to advance oral health equity through data-driven, interdisciplinary approaches. She serves as an Associate Professor in the Department of Health Policy and Management at the Harvard T.H. Chan School of Public Health and in the Department of Oral Health Policy and Epidemiology at the Harvard School of Dental Medicine, with additional affiliations at the Harvard Data Science Initiative and the Kempner Institute for the Study of Natural and Artificial Intelligence. Dr. Elani earned her Ph.D. in Dental Sciences with a concentration in Epidemiology and Population Health and an M.Sc. from McGill University, as well as an MMSc in Oral Biology and a Clinical Certificate in Prosthodontics from Harvard. Her research explores health disparities, oral health policy, and the application of artificial intelligence and machine learning in predicting oral health outcomes. She has authored over 30 peer-reviewed publications in high-impact journals such as Health Services Research, JAMA Network Open, and Journal of Dental Research, with her work cited widely for shaping discussions on healthcare access and reform. As principal investigator on multiple NIH and foundation-funded projects, including R01 and K-series grants, she has led innovative studies assessing the effects of Medicaid expansion and socioeconomic factors on dental care utilization. Recognized with Harvard’s Young Mentor Award and Distinguished Junior Faculty Award in 2024, Dr. Elani also contributes to national and international committees, including the NIH, the National Academies of Sciences, and the Medicaid Policy Research Advisory Group. Through her leadership, global collaborations, and dedication to mentoring, she continues to advance the intersection of artificial intelligence, population health, and oral health policy, driving forward equitable and sustainable improvements in healthcare delivery worldwide.

Profiles: Scopus | ORCID
Featured Publication

lani, H. W., Kawachi, I., & Sommers, B. D. (2020). Changes in emergency department dental visits after Medicaid expansion. Health Services Research, 55(1), 76–84.

Elani, H. W., Simon, L., Ticku, S., Bain, P. A., Barrow, J., & Riedy, C. A. (2018). Does providing dental services reduce overall health care costs? A systematic review of the literature. Journal of the American Dental Association (1939), 149(6), 430–438.e10.

Elani, H. W., Starr, J. R., Da Silva, J. D., & Gallucci, G. O. (2018). Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. Journal of Dental Research, 97(13), 1424–1430.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., Cleber, S., & Bittner, N. (2019). Comparison of the color appearance of peri-implant soft tissue with natural gingiva using anodized pink-neck implants and pink abutments: A prospective clinical trial. The International Journal of Oral & Maxillofacial Implants, 34(1), 168–175.

Gil, M. S., Ishikawa-Nagai, S., Elani, H. W., Da Silva, J. D., Kim, D. M., Tarnow, D., Schulze-Späte, U., & Bittner, N. (2017). A prospective clinical trial to assess the optical efficacy of pink neck implants and pink abutments on soft tissue esthetics. Journal of Esthetic and Restorative Dentistry, 29(3), 213–219.

Miao Cui | Artificial Intelligence | Best Researcher Award

Prof. Miao Cui | Artificial Intelligence | Best Researcher Award

Professor |Dalian University of Technology| China

Professor Miao Cui focuses on the fields of digital transformation, innovation management, and data-driven business strategy, with extensive exploration in enterprise and community digitalization practices. Her research emphasizes how organizations orchestrate resources to adapt to digital economies, manage transformation, and foster innovation across various sectors, including state-owned enterprises, traditional manufacturing, high-tech firms, service industries, and non-profit community organizations. She has conducted in-depth case studies on more than 50 enterprises such as Haier, P&G, Inspur, and BBMW, as well as over 30 rural communities across China, providing valuable insights into digital capability development and data-oriented strategic renewal. Through her work, Miao Cui examines the interconnection between big data strategy and organizational growth, focusing on how data analysis informs decision-making, enhances resilience, and drives innovation in dynamic environments. Her studies extend to the role of information systems in enabling business transformation, ecosystem governance, and e-commerce-based social innovation, contributing significantly to both theory and practice in management sciences. Miao Cui’s research achievements include numerous high-impact publications in leading international journals such as the International Journal of Information Management, Information Systems Journal, and Journal of Strategic Information Systems, recognized as top-ranked in their field. Her scholarly contributions have been repeatedly highlighted through ESI highly cited and hot papers, reflecting the global relevance and influence of her work. Additionally, she has authored and edited multiple academic monographs, developed widely adopted management cases for Ivey Publishing, and received several awards for excellence in research and social science innovation. Her work has been cited extensively and applied in organizational and policy contexts, contributing to global discussions on digital transformation and innovation leadership. Miao Cui has 625 Citations, 26 Documents, and an h-index of 9. View h-index.

Profile: Scopus 
Featured Publication

Author(s) unknown. (2025). Collaborative innovation network embeddedness and a firm’s technological impact: Does prior networking experience matter? Journal of Technology Transfer. Cited by 1

Author(s) unknown. (2025). An integrated approach to modeling the influence of critical factors in low-carbon technology adoption by chemical enterprises in China. Journal of Environmental Management. Cited by 2