Prof. Dr. Mitsuru Endo | Computational Theory | Best Researcher Award

Professor Emeritus| Tokyo Institute of Technology | Japan

Mitsuru Endo has made distinguished contributions to applied mechanics and vibration engineering, focusing on the dynamic behavior of continua and structures and the development of advanced noise and vibration control systems. His work bridges theoretical mechanics and practical applications in acoustic control, offering innovative solutions for vibration reduction in engineering systems. Endo has pioneered the extension of Southwell-Dunkerley methods for synthesizing frequencies, contributing to a deeper understanding of vibrational modes in complex systems. His research on flexural vibrations of rotating rings and deformation theories for beams, plates, and cylindrical shells has advanced modeling precision in mechanical structures. By introducing alternative formulations for Timoshenko beam and Mindlin plate models, Endo improved computational accuracy in vibration analysis. His innovative “one-half order shear deformation theory” redefined how transverse shear deformation is represented in structural mechanics, influencing global research on elasticity and composite structures. Endo’s extensive publications in leading journals such as the Journal of Sound and Vibration and the International Journal of Mechanical Sciences have established a strong foundation for future explorations in vibration modeling, acoustic optimization, and structural mechanics. His studies integrate both analytical and experimental perspectives, driving advancements in passive and active noise control technologies essential to aerospace, automotive, and civil engineering applications. The recognition of his work through multiple prestigious awards underscores his impact in mechanical sciences and engineering research, with 440 citations, 64 documents, and an h-index of 8.

Profiles: Scopus | ORCID
Featured Publication

Endo, M. (2013). Study on direct sound reduction structure for reducing noise generated by vibrating solids. Journal of Sound and Vibration, 332, 2643–2658. 5 citations

Endo, M. (2015). Study on an alternative deformation concept for the Timoshenko beam and Mindlin plate models. International Journal of Engineering Science, 87, 32–56. 34 citations

Endo, M. (2016). An alternative first-order shear deformation concept and its application to beam, plate and cylindrical shell models. Composite Structures, 146, 50–61. 17 citations

Endo, M. (n.d.). Study on the characteristics of noise reduction effects of a sound reduction structure. Conference Paper. 1 citation

Mitsuru Endo | Computational Theory | Best Researcher Award

You May Also Like